ترغب بنشر مسار تعليمي؟ اضغط هنا

Progress in calculating scattering phase shifts on $N_f=2+1$ anisotropic clover Wilson lattices is described. The stochastic LapH method facilitates computations in large volumes and for light pion masses. Results for pion masses down to 240 MeV, keeping $m_pi L > 4$, are presented.
The spectrum of excited isovector mesons is studied using a 32^3 x 256 anisotropic lattice with u,d quark masses set to give a pion mass near 240 MeV. Results in the bosonic isovector nonstrange symmetry channels of zero total momentum are presented using correlation matrices of unprecedented size. In addition to spatially-extended single-meson operators, large numbers of two-meson operators are used, involving a wide variety of light isovector, isoscalar, and strange meson operators of varying relative momenta. All needed Wick contractions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing. Level identification is discussed.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Results in the zero-momentum bosonic I=1/2, S=1, T1u symmetry sector of QCD using a correlation matrix of 58 operators are presented. All needed Wick contra ctions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing. Level identification using probe operators is discussed.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Our first results in the zero-momentum bosonic I=1, S=0, T1u+ symmetry sector of QCD using a correlation matrix of 56 operators are presented. In addition t o a dozen spatially-extended meson operators, 44 two-meson operators are used, involving a wide variety of light isovector, isoscalar, and strange meson operators of varying relative momenta. All needed Wick contractions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing. Level identification is discussed.
Multi-hadron operators are crucial for reliably extracting the masses of excited states lying above multi-hadron thresholds in lattice QCD Monte Carlo calculations. The construction of multi-hadron operators with significant coupling to the lowest-ly ing multi-hadron states of interest involves combining single hadron operators of various momenta. The design and implementation of large sets of spatially-extended single-hadron operators of definite momentum and their combinations into two-hadron operators are described. The single hadron operators are all assemblages of gauge-covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests of these operators on 24^3 x 128 and 32^3 x 256 anisotropic lattices using a stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing are presented. The method provides reliable estimates of all needed correlations, even those that are particularly difficult to compute, such as eta eta -> eta eta in the scalar channel, which involves the subtraction of a large vacuum expectation value. A new glueball operator is introduced, and the evaluation of the mixing of this glueball operator with a quark-antiquark operator, pi-pi, and eta-eta operators is shown to be feasible.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necess itating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible. Some of our initial results show warning signs about extracting high-lying resonance energies using only single-hadron operators.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necess itating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested, and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.
A new method of stochastically estimating the low-lying effects of quark propagation is proposed which allows accurate determinations of temporal correlations of single-hadron and multi-hadron operators in lattice QCD. The method is well suited for c alculations in large volumes. Contributions involving quark propagation connecting hadron sink operators at the same final time can be handled in a straightforward manner, even for a large number of final time slices. The method exploits Laplacian Heaviside (LapH) smearing. ZN noise is introduced in a novel way, and variance reduction is achieved using judiciously-chosen noise dilution projectors. The method is tested using isoscalar mesons in the scalar, pseudoscalar, and vector channels, and using the two-pion system of total isospin I=0,1,2 on large anisotropic 24^3 x 128 lattices with spatial spacing a_s~0.12 fm and temporal spacing a_t~0.034 fm for pion masses mpi~390 and 240 MeV.
Our progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Sets of spatially-extended hadron operators with a variety of different momenta are used. A new method of stochastically estimating the low-lying effect s of quark propagation is utilized which allows reliable determinations of temporal correlations of both single-hadron and multi-hadron operators. The method is tested on the isoscalar mesons in the scalar, pseudoscalar, and vector channels, and on the two-pion system of total isospin I=0,1,2.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. A new method of stochastically estimating the low-lying effects of quark propagation is utilized which allows reliable determinations of temporal correlations of both single-hadron and multi-hadron operators. The method is tested on the eta, sigma, omega mesons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا