ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - C. Monney 2009
We present angle-resolved photoemission experiments on 1T-TiSe2 at temperatures ranging from 13K to 288K. The data evidence a dramatic renormalization of the conduction band below 100K, whose origin can be explained with the exciton condensate phase model. The renormalization translates into a substantial effective mass reduction of the dominant charge carriers and can be directly related to the low temperature downturn of the resistivity of 1T-TiSe2. This observation is in opposition to the common belief that strong interactions produce heavier quasiparticles through an increased effective mass.
84 - C. Monney 2009
The charge density wave phase transition of 1T-TiSe2 is studied by angle-resolved photoemission over a wide temperature range. An important chemical potential shift which strongly evolves with temperature is evidenced. In the framework of the exciton condensate phase, the detailed temperature dependence of the associated order parameter is extracted. Having a mean-field-like behaviour at low temperature, it exhibits a non-zero value above the transition, interpreted as the signature of strong excitonic fluctuations, reminiscent of the pseudo-gap phase of high temperature superconductors. Integrated intensity around the Fermi level is found to display a trend similar to the measured resistivity and is discussed within the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا