ترغب بنشر مسار تعليمي؟ اضغط هنا

The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one s tack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in the device fabrication.
81 - C. Casiraghi 2009
Here we use pristine graphene samples in order to analyze how the Raman peaks intensity, measured at 2.4 eV and 1.96 eV excitation energy, changes with the amount of doping. The use of pristine graphene allows investigating the intensity dependence c lose to the Dirac point. We show that the G peak intensity is independent on the doping, while the 2D peak intensity strongly decreases for increasing doping. Analyzing this dependence in the framework of a fully resonant process, we found that the total electron-phonon scattering rate is ~40 meV at 2.4 eV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا