ترغب بنشر مسار تعليمي؟ اضغط هنا

Sun-like stars show intensity fluctuations on a number of time scales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars - while the strongest signatures usually or iginate from spots, granulation and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 seconds sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae and p-mode oscillations were analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures - comparable to what is seen in the Sun.
We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spec tra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars.
Due to its unique long-term coverage and high photometric precision, observations from the Kepler asteroseismic investigation will provide us with the possibility to sound stellar cycles in a number of solar-type stars with asteroseismology. By compa ring these measurements with conventional ground-based chromospheric activity measurements we might be able to increase our understanding of the relation between the chromospheric changes and the changes in the eigenmodes. In parallel with the Kepler observations we have therefore started a programme at the Nordic Optical Telescope to observe and monitor chromospheric activity in the stars that are most likely to be selected for observations for the whole satellite mission. The ground-based observations presented here can be used both to guide the selection of the special Kepler targets and as the first step in a monitoring programme for stellar cycles. Also, the chromospheric activity measurements obtained from the ground-based observations can be compared with stellar parameters such as ages and rotation in order to improve stellar evolution models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا