ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce the notion of localized topological pressure for continuous maps on compact metric spaces. The localized pressure of a continuous potential $varphi$ is computed by considering only those $(n,epsilon)$-separated sets whose statistical sum s with respect to an $m$-dimensional potential $Phi$ are close to a given value $win bR^m$. We then establish for several classes of systems and potentials $varphi$ and $Phi$ a local version of the variational principle. We also construct examples showing that the assumptions in the localized variational principle are fairly sharp. Next, we study localized equilibrium states and show that even in the case of subshifts of finite type and Holder continuous potentials, there are several new phenomena that do not occur in the theory of classical equilibrium states. In particular, ergodic localized equilibrium states for Holder continuous potentials are in general not unique.
Galaxies migrate from the blue cloud to the red sequence when their star formation is quenched. Here, we report on galaxies quenched by environmental effects and not by mergers or strong AGN as often invoked: They form stars at a reduced rate which i s optically even less conspicuous, and manifest a transition population of blue spirals evolving into S0 galaxies. These optically passive or red spirals are found in large numbers in the STAGES project (and by Galaxy Zoo) in the infall region of clusters and groups.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ~0.17 using restframe near-UV-optical SEDs, 24 micron IR data and HST morphologies from the STAGES dataset. The cluster sample is based on COMBO-17 redshifts with an rms precision of sigma_cz~2000 km/sec. We find that dusty red galaxies and optically passive spirals in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only 4x lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of log M*/Msol=[10,11] where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific SFR of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At log M*/Msol<10, such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note, that edge-on spirals play a minor role; despite being dust-reddened they form only a small fraction of spirals independent of environment.
We present an update to the photometric calibration of the COMBO-17 catalogue on the Extended Chandra Deep Field South, which is now consistent with the GaBoDS and MUSYC catalogues. As a result, photometric redshifts become slightly more accurate, wi th <0.01 rms and little bias in the delta_z/(1+z) of galaxies with R<21 and of QSOs with R<24. With increasing photon noise the rms of galaxies reaches 0.02 for R<23 and 0.035 at R~23.5. Consequences for the rest-frame colours of galaxies at z<1 are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا