ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first optical (590--890 nm) imaging polarimetry observations of the pre-transitional protoplanetary disk around the young solar analog LkCa 15, addressing a number of open questions raised by previous studies. We detect the previously unseen far side of the disk gap, confirm the highly eccentric scattered-light gap shape that was postulated from near-infrared imaging, at odds with the symmetric gap inferred from millimeter interferometry. Furthermore, we resolve the inner disk for the first time and trace it out to 30 AU. This new source of scattered light may contribute to the near-infrared interferometric signal attributed to the protoplanet candidate LkCa 15 b, which lies embedded in the outer regions of the inner disk. Finally, we present a new model for the system architecture of LkCa 15 that ties these new findings together. These observations were taken during science verification of SPHERE ZIMPOL and demonstrate this facilitys performance for faint guide stars under adverse observing conditions.
Direct imaging surveys for exoplanets commonly exclude binary stars from their target lists, leaving a large part of the overall planet demography unexplored. To address this gap in our understanding of planet formation and evolution, we have launche d the first direct imaging survey dedicated to circumbinary planets: SPOTS, the Search for Planets Orbiting Two Stars. In this paper, we discuss the theoretical context, scientific merit, and technical feasibility of such observations, describe the target sample and observational strategy of our survey, and report on the first results from our pilot survey of 26 targets with the VLT NaCo facility. While we have not found any confirmed substellar companions to date, a number of promising candidate companions remain to be tested for common proper motion in upcoming follow-up observations. We also report on the astrometry of the three resolved binaries in our target sample. This pilot survey constitutes a successful proof of concept for our survey strategy and paves the way for a second stage of exploratory observations with VLT SPHERE.
We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15, and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Green stein g = 0.67 [-0.11,+0.18]) and a significantly tapered gap edge (round wall), but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images. We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27 [-20,+19] mas) is notably lower than that found in our earlier H-band images (Thalmann et al. 2010). Intriguingly, we also find, at high significance, an offset of y = 69 [-25, +49] mas perpendicular to the line of nodes. If confirmed by future observations, this would imply a highly elliptical -- or otherwise asymmetric -- disk gap with an effective eccentricity of e = ~0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk, and appears brighter than the far side because of strong forward scattering.
104 - C. Thalmann 2013
We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose pres- ence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, an d dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of ~2, as well as polarized differential imaging (PDI) to measure the degree of scattering polarization out to ~1.5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis (PCA) to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S_out = -3.2 [-3.6,-2.9], an inclination of i = 84{deg} [81{deg},86{deg}], a high Henyey-Greenstein forward-scattering parameter of g = 0.45 [0.35, 0.60], and a non-significant disk-star offset of u = 3.0 [-1.5, 7.5] AU = 24 [-13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from ~10% at 0.5 to ~45% at 1.5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure.
234 - C. Thalmann 2011
We present high-contrast images of HR 4796 A taken with Subaru/HiCIAO in H-band, resolving the debris disk in scattered light. The application of specialized angular differential imaging methods (ADI) allows us to trace the inner edge of the disk wit h high precision, and reveals a pair of streamers extending radially outwards from the ansae. Using a simple disk model with a power-law surface brightness profile, we demonstrate that the observed streamers can be understood as part of the smoothly tapered outer boundary of the debris disk, which is most visible at the ansae. Our observations are consistent with the expected result of a narrow planetesimal ring being ground up in a collisional cascade, yielding dust with a wide range of grain sizes. Radiation forces leave large grains in the ring and push smaller grains onto elliptical, or even hyperbolic trajectories. We measure and characterize the disks surface brightness profile, and confirm the previously suspected offset of the disks center from the stars position along the rings major axis. Furthermore, we present first evidence for an offset along the minor axis. Such offsets are commonly viewed as signposts for the presence of unseen planets within a disks cavity. Our images also offer new constraints on the presence of companions down to the planetary mass regime (~9 Jupiter masses at 0.5, ~3 Jupiter masses at 1).
Astrometric monitoring of the Sirius binary system over the past century has yielded several predictions for an unseen third system component, the most recent one suggesting a leq50 MJup object in a ~6.3-year orbit around Sirius A. Here we present tw o epochs of high-contrast imaging observations performed with Subaru IRCS and AO188 in the 4.05 mum narrow-band Br alpha filter. These data surpass previous observations by an order of magnitude in detectable companion mass, allowing us to probe the relevant separation range down to the planetary mass regime (6-12 M_Jup at 1, 2-4 M_Jup at 2, and 1.6 M_Jup beyond 4). We complement these data with one epoch of M-band observations from MMT/AO Clio, which reach comparable performance. No dataset reveals any companion candidates above the 5-sigma level, allowing us to refute the existence of Sirius C as suggested by the previous astrometric analysis. Furthermore, our Br alpha photometry of Sirius B confirms the lack of an infrared excess beyond the white dwarfs blackbody spectrum.
67 - C. Thalmann 2010
We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent wit h the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disks optically thick bulk. We note that forward-scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions (SED) of such systems, comprising an optically thick outer disk with an inner truncation radius of ~46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 Jupiter masses on companions at separations outside of 0.1 and of 13 Jupiter masses outside of 0.2. Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا