ترغب بنشر مسار تعليمي؟ اضغط هنا

We present predictions for the total cross sections for pair production of squarks and gluinos at the LHC including a combined NNLL resummation of soft and Coulomb gluon effects. The NNLL corrections can be up to 25% relative to previous NLL results and reduce the theoretical uncertainties to the 10% level.
82 - M. Beneke , P. Falgari , S. Klein 2012
We present predictions for the total top-quark pair production cross section at the Tevatron and the LHC with 7,8 and 14 TeV centre-of-mass energy, including the resummation of threshold logarithms and Coulomb corrections through next-to-next-to-lead ing logarithmic order, and top-antitop bound-state contributions. The remaining theoretical and PDF uncertainties and prospects for the measurement of the top mass from the total cross section are discussed.
76 - P. Falgari 2012
We present predictions of the total cross sections for pair production of squarks and gluinos at the LHC, including the stop-antistop production process. Our calculation supplements full fixed-order NLO predictions with resummation of threshold logar ithms and Coulomb singularities at next-to-leading logarithmic (NLL) accuracy, including bound-state effects. The numerical effect of higher-order Coulomb terms can be as big or larger than that of soft-gluon corrections. For a selection of benchmark points accessible with data from the 2010-2012 LHC runs, resummation leads to an enhancement of the total inclusive squark and gluino production cross section in the 15-30 % range. For individual production processes of gluinos, the corrections can be much larger. The theoretical uncertainty in the prediction of the hard-scattering cross sections is typically reduced to the 10 % level.
The consequences of on-shell supersymmetry are studied for scattering amplitudes with massive particles in four dimensions. Using the massive version of the spinor helicity formalism the supersymmetry transformations relating products of on-shell sta tes are derived directly from the on-shell supersymmetry algebra for any massive representation. Solutions to the resulting Ward identities can be constructed as functions on the on-shell superspaces that are obtained from the coherent state method. In simple cases it is shown that these superspaces allow one to construct explicitly supersymmetric scattering amplitudes. Supersymmetric on-shell recursion relations for tree-level superamplitudes with massive particles are introduced. As examples, simple supersymmetric amplitudes are constructed in SQCD, the Abelian Higgs model, the Coulomb branch of N=4 super Yang-Mills, QCD with an effective Higgs-gluon coupling and for massive vector boson currents.
We consider the resummation of soft and Coulomb gluons for pair-production processes of heavy coloured particles at hadron colliders, and discuss recent results on the construction of a basis in colour space that diagonalizes the soft function to all orders in perturbation theory and the determination of the two-loop soft anomalous dimension needed for NNLL resummations. We present results for the combined NLL resummation of soft gluon and Coulomb-gluon effects for squark-antisquark production at the LHC.
The analog of the Cachazo-Svrvcek-Witten rules for scattering amplitudes with massive quarks is derived following an approach previously employed for amplitudes with massive scalars. A prescription for the external wave-functions is given that leads to a one-to one relation between fields in the action and spin-states of massive quarks. Several examples for the application of the rules are given and the structure of some all-multiplicity amplitudes with a pair of massive quarks is discussed. The rules make supersymmetric relations to amplitudes with massive scalars manifest at the level of the action. The formalism is extended to several quark flavors with different masses.
We perform a dedicated study of the four-fermion production process e- e+ -> mu- nubar_mu u dbar X near the W pair-production threshold in view of the importance of this process for a precise measurement of the W boson mass. Accurate theoretical pred ictions for this process require a systematic treatment of finite-width effects. We use unstable-particle effective field theory (EFT) to perform an expansion in the coupling constants, GammaW/MW, and the non-relativistic velocity v of the W boson up to next-to-leading order in GammaW/MW ~ alpha_ew ~ v^2. We find that the dominant theoretical uncertainty in MW is currently due to an incomplete treatment of initial-state radiation. The remaining uncertainty of the NLO EFT calculation translates into delta MW ~ 10-15 MeV, and to about 5 MeV with additional input from the NLO four-fermion calculation in the full theory.
471 - Christian Schwinn 2007
In this talk, I review the effective theory approach to unstable particle production and present results of a calculation of the process e- e+ ->mu- nubar_mu u dbar X near the W-pair production threshold up to next-to-leading order in GammaW/MW ~ alp ha ~ v^2. The remaining theoretical uncertainty and the impact on the measurement of the W mass is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا