ترغب بنشر مسار تعليمي؟ اضغط هنا

Denote by p_k the k-th power sum symmetric polynomial n variables. The interpretation of the q-analogue of the binomial coefficient as Hilbert function leads us to discover that n consecutive power sums in n variables form a regular sequence. We cons ider then the following problem: describe the subsets n powersums forming a regular sequence. A necessary condition is that n! divides the product of the degrees of the elements. To find an easily verifiable sufficient condition turns out to be surprisingly difficult already in 3 variables. Given positive integers a<b<c with GCD(a,b,c)=1, we conjecture that p_a, p_b, p_c is a regular sequence for n=3 if and only if 6 divides abc. We provide evidence for the conjecture by proving it in several special instances.
We generalise Dworks theory of $p$-adic formal congruences from the univariate to a multi-variate setting. We apply our results to prove integrality assertions on the Taylor coefficients of (multi-variable) mirror maps. More precisely, with $mathbf z =(z_1,z_2,...,z_d)$, we show that the Taylor coefficients of the multi-variable series $q(mathbf z)=z_iexp(G(mathbf z)/F(mathbf z))$ are integers, where $F(mathbf z)$ and $G(mathbf z)+log(z_i) F(mathbf z)$, $i=1,2,...,d$, are specific solutions of certain GKZ systems. This result implies the integrality of the Taylor coefficients of numerous families of multi-variable mirror maps of Calabi-Yau complete intersections in weighted projective spaces, as well as of many one-variable mirror maps in the Tables of Calabi-Yau equations [arXiv:math/0507430] of Almkvist, van Enckevort, van Straten and Zudilin. In particular, our results prove a conjecture of Batyrev and van Straten in [Comm. Math. Phys. 168 (1995), 493-533] on the integrality of the Taylor coefficients of canonical coordinates for a large family of such coordinates in several variables.
Given a finite irreducible Coxeter group $W$, a positive integer $d$, and types $T_1,T_2,...,T_d$ (in the sense of the classification of finite Coxeter groups), we compute the number of decompositions $c=si_1si_2 cdotssi_d$ of a Coxeter element $c$ o f $W$, such that $si_i$ is a Coxeter element in a subgroup of type $T_i$ in $W$, $i=1,2,...,d$, and such that the factorisation is minimal in the sense that the sum of the ranks of the $T_i$s, $i=1,2,...,d$, equals the rank of $W$. For the exceptional types, these decomposition numbers have been computed by the first author. The type $A_n$ decomposition numbers have been computed by Goulden and Jackson, albeit using a somewhat different language. We explain how to extract the type $B_n$ decomposition numbers from results of Bona, Bousquet, Labelle and Leroux on map enumeration. Our formula for the type $D_n$ decomposition numbers is new. These results are then used to determine, for a fixed positive integer $l$ and fixed integers $r_1le r_2le ...le r_l$, the number of multi-chains $pi_1le pi_2le ...le pi_l$ in Armstrongs generalised non-crossing partitions poset, where the poset rank of $pi_i$ equals $r_i$, and where the block structure of $pi_1$ is prescribed. We demonstrate that this result implies all known enumerative results on ordinary and generalised non-crossing partitions via appropriate summations. Surprisingly, this result on multi-chain enumeration is new even for the original non-crossing partitions of Kreweras. Moreover, the result allows one to solve the problem of rank-selected chain enumeration in the type $D_n$ generalised non-crossing partitions poset, which, in turn, leads to a proof of Armstrongs $F=M$ Conjecture in type $D_n$.
We show that the Taylor coefficients of the series ${bf q}(z)=zexp({bf G}(z)/{bf F}(z))$ are integers, where ${bf F}(z)$ and ${bf G}(z)+log(z) {bf F}(z)$ are specific solutions of certain hypergeometric differential equations with maximal unipotent m onodromy at $z=0$. We also address the question of finding the largest integer $u$ such that the Taylor coefficients of $(z ^{-1}{bf q}(z))^{1/u}$ are still integers. As consequences, we are able to prove numerous integrality results for the Taylor coefficients of mirror maps of Calabi-Yau complete intersections in weighted projective spaces, which improve and refine previous results by Lian and Yau, and by Zudilin. In particular, we prove the general ``integrality conjecture of Zudilin about these mirror maps. A further outcome of the present study is the determination of the Dwork-Kontsevich sequence $(u_N)_{Nge1}$, where $u_N$ is the largest integer such that $q(z)^{1/u_N}$ is a series with integer coefficients, where $q(z)=exp(F(z)/G(z))$, $F(z)=sum_{m=0} ^{infty} (Nm)! z^m/m!^N$ and $G(z)=sum_{m=1} ^{infty} (H_{Nm}-H_m)(Nm)! z^m/m!^N$, with $H_n$ denoting the $n$-th harmonic number, conditional on the conjecture that there are no prime number $p$ and integer $N$ such that the $p$-adic valuation of $H_N-1$ is strictly greater than 3.
It is shown how Andrews multidimensional extension of Watsons transformation between a very-well-poised $_8phi_7$-series and a balanced $_4phi_3$-series can be used to give a straightforward proof of a conjecture of Zudilin and the second author on t he arithmetic behaviour of the coefficients of certain linear forms of 1 and Catalans constant. This proof is considerably simpler and more stream-lined than the first proof, due to the second author.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا