ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the physical cause of the great range in the ionization level seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field independent component analysis identifies examples of individual SDSS galaxies whose spectra are not dominated by emission due to star formation (SF), which we designate as AGN. We assembled high S/N ratio composite spectra of a sequence of these AGN defined by the ionization level of their narrow-line regions (NLR), extending down to very low-ionization cases. We used a local optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN sequence. These included the weak lines that can be measured only in the co-added spectra, providing consistency checks on strong line diagnostics. After integrating over a wide range of radii and densities our models indicate that the radial extent of the NLR is the major parameter in determining the position of high to moderate ionization AGN along our sequence, providing a physical interpretation for their systematic variation. Higher ionization AGN contain optimally emitting clouds that are more concentrated towards the central continuum source than in lower ionization AGN. Our LOC models indicate that for the objects that lie on our AGN sequence, the ionizing luminosity is anticorrelated with the NLR ionization level, and hence anticorrelated with the radial concentration and physical extent of the NLR. A possible interpretation that deserves further exploration is that the ionization sequence might be an age sequence where low ionization objects are older and have systematically cleared out their central regions by radiation pressure. We consider that our AGN sequence instead represents a mixing curve of SF and AGN spectra, but argue that while many galaxies do have this type of composite spectra, our AGN sequence appears to be a special set of objects with negligible SF excitation.
Understanding how molecules and dust might have formed within a rapidly expanding young supernova remnant is important because of the obvious application to vigorous supernova activity at very high redshift. In previous papers, we found that the H2 e mission is often quite strong, correlates with optical low-ionization emission lines, and has a surprisingly high excitation temperature. Here we study Knot 51, a representative, bright example, for which we have available long slit optical and NIR spectra covering emission lines from ionized, neutral, and molecular gas, as well as HST visible and SOAR Telescope NIR narrow-band images. We present a series of CLOUDY simulations to probe the excitation mechanisms, formation processes and dust content in environments that can produce the observed H2 emission. We do not try for an exact match between model and observations given Knot 51s ambiguous geometry. Rather, we aim to explain how the bright H2 emission lines can be formed from within the volume of Knot 51 that also produces the observed optical emission from ionized and neutral gas. Our models that are powered only by the Crabs synchrotron radiation are ruled out because they cannot reproduce the strong, thermal H2 emission. The simulations that come closest to fitting the observations have the core of Knot 51 almost entirely atomic with the H2 emission coming from just a trace molecular component, and in which there is extra heating. In this unusual environment, H2 forms primarily by associative detachment rather than grain catalysis. In this picture, the 55 H2-emitting cores that we have previously catalogued in the Crab have a total mass of about 0.1 M_sun, which is about 5% of the total mass of the system of filaments. We also explore the effect of varying the dust abundance. We discuss possible future observations that could further elucidate the nature of these H2 knots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا