ترغب بنشر مسار تعليمي؟ اضغط هنا

The potential for laser-produced plasmas to yield fundamental insights into high energy density physics (HEDP) and deliver other useful applications can sometimes be frustrated by uncertainties in modeling the properties and behavior of these plasmas using radiation-hydrodynamics codes. In an effort to overcome this and to corroborate the accuracy of the HEDP capabilities that have been added to the publicly available FLASH radiation-hydrodynamics code, we present detailed code-to-code comparisons between FLASH and the HYDRA code developed at Lawrence Livermore National Laboratory using previously published HYDRA simulations from Grava et al. 2008. That study describes a laser experiment that produced a jet-like feature that the authors compare to astrophysical jets. Importantly, the Grava et al. 2008 experiment included detailed x-ray interferometric measurements of electron number densities. Despite radically different methods for treating the computational mesh, and different equation of state and opacity models, the FLASH results greatly resemble the results from HYDRA and, most importantly, the experimental measurements of electron density. Having validated the FLASH code in this way, we use the code to further investigate and understand the formation of the jet seen in the Grava et al. (2008) experiment and discuss its relation to the Wan et al. (1997) experiment at the NOVA laser.
Recent years have seen a resurgence of interest in using Virtual Reality (VR) technology to benefit instruction, especially in physics and related subjects. As VR devices improve and become more widely available, there remains a number of unanswered questions regarding the impact of VR on student learning and how best to use this technology in the classroom. On the topic of electrostatics, for example, a large, controlled, randomized study performed by Smith et al. 2017cite{smith17}, found that VR-based instruction had an overall negligible impact on student learning compared to videos or images. However, they did find a strong trend for students who reported frequent video game play to learn better from VR than other media. One possible interpretation of this result is that extended videogame play provides a kind of training that enables a student to learn more comfortably in the virtual environment. In the present work we consider if a VR training activity that is unrelated to electrostatics can help prepare students to learn electrostatics from subsequent VR instruction. We find that preliminary VR training leads to a small but statistically significant improvement in student performance on our electrostatics assessment. We also find that student reported game play is still correlated with higher scores on this metric.
Computational Thinking (CT) is still a relatively new term in the lexicon of learning objectives and science standards. There is not yet widespread agreement on the precise definition or implementation of CT, and efforts to assess CT are still maturi ng, even as more states adopt K-12 computer science standards. In this article we will try to summarize what CT means for a typical introductory (i.e. high school or early college) physics class. This will include a discussion of the ways that instructors may already be incorporating elements of CT in their classes without knowing it. Our intention in writing this article is to provide a helpful, concise and readable introduction to this topic for physics instructors. We also put forward some ideas for what the future of CT in introductory physics may look like.
Stereoscopic virtual reality (VR) has experienced a resurgence due to flagship products such as the Oculus Rift, HTC Vive and smartphone-based VR solutions like Google Cardboard. This is causing the question to resurface: how can stereoscopic VR be u seful in instruction, if at all, and what are the pedagogical best practices for its use? To address this, and to continue our work in this sphere, we performed a study of 289 introductory physics students who were sorted into three different treatment types: stereoscopic virtual reality, WebGL simulation, and static 2D images, each designed to provide information about magnetic fields and forces. Students were assessed using preliminary items designed to focus on heavily-3D systems. We report on assessment reliability, and on student performance. Overall, we find that students who used VR did not significantly outperform students using other treatment types. There were significant differences between sexes, as other studies have noted. Dependence on students self-reported 3D videogame play was observed, in keeping with previous studies, but this dependence was not restricted to the VR treatment.
Virtual reality (VR) has long promised to revolutionize education, but with little follow-through. Part of the reason for this is the prohibitive cost of immersive VR headsets or caves. This has changed with the advent of smartphone-based VR (along t he lines of Google cardboard) which allows students to use smartphones and inexpensive plastic or cardboard viewers to enjoy stereoscopic VR simulations. We have completed the largest-ever such study on 627 students enrolled in calculus-based freshman physics at The Ohio State University. This initial study focused on student understanding of electric fields. Students were split into three treatments groups: VR, video, and static 2D images. Students were asked questions before, during, and after treatment. Here we present a preliminary analysis including overall post-pre improvement among the treatment groups, dependence of improvement on gender, and previous video game experience. Results on select questions are discussed. Several electric field visualizations similar to those used in this study are freely available on Google Play http://go.osu.edu/BuckeyeVR
While there exists a significant number of web interactives for introductory physics, students are almost never shown the computer code that generates these interactives even when the physics parts of these programs are relatively simple. Building of f of a set of carefully-designed classical mechanics programming exercises that were constructed with this goal in mind, we present a series of electromagnetism programming exercises in a browser-based framework called p5.js. Importantly, this framework can be used to highlight the physics aspects of an interactive simulation code while obscuring other details. This approach allows absolute beginner programmers to gain experience in modifying and running the program without becoming overwhelmed. We plan to probe the impact on student conceptual learning using the Brief Electricity and Magnetism Assessment and other questions. We invite collaborators and teachers to adopt this framework in their high school or early undergraduate classes. All exercises are available at http://compadre.org/PICUP
Incorporating computer programming exercises in introductory physics is a delicate task that involves a number of choices that may have a strong affect on student learning. We present an approach that speaks to a number of common concerns that arise when using programming exercises in introductory physics classes where most students are absolute beginner programmers. These students need an approach that is (1) simple, involving 75 or fewer lines of well-commented code, (2) easy to use, with browser-based coding tools, (3) interactive, with a high frame rate to give a video-game like feel, (4) step-by-step with the ability to interact with intermediate stages of the correct program and (5) thoughtfully integrated into the physics curriculum, for example, by illustrating velocity and acceleration vectors throughout. We present a set of hour-long activities for classical mechanics that resemble well-known games such as asteroids, lunar lander and angry birds. Survey results from the first activity from four semesters of introductory physics classes at OSU in which a high percentage of the students are weak or absolute beginner programmers seems to confirm that the level of difficulty is appropriate for this level and that the students enjoy the activity. These exercises are available for general use at http://compadre.org/PICUP In the future we plan to assess conceptual knowledge using an animated version of the Force Concept Inventory originally developed by M. Dancy.
Laser-accelerated electron beams have been created at a kHz repetition rate from the {it reflection} of intense ($sim10^{18}$ W/cm$^2$), $sim$40 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-in-Cell (PIC) simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave can inject electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standing wave acceleration: a highly relativistic case ($a_0~geq~1$), and a moderately relativistic case ($a_0~sim~0.5$) which operates over a larger fraction of the laser period. In previous studies, other groups have investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this by investigating electron acceleration in the {it specular (back reflection) direction} and over a wide range of intensities ($10^{17}-10^{19}$ W cm$^{-2}$).
112 - Chris Orban 2013
In performing cosmological N-body simulations, it is widely appreciated that the growth of structure on the largest scales within a simulation box will be inhibited by the finite size of the simulation volume. Following ideas set forth in Seto (1999) , this paper shows that standard (a.k.a. 1-loop) cosmological perturbation theory (SPT) can be used to predict, in an approximate way, the deleterious effect of the box scale on the power spectrum of density fluctuations in simulation volumes. Alternatively, this approach can be used to quickly estimate post facto the effect of the box scale on power spectrum results from existing simulations. In this way SPT can help determine whether larger box sizes or other more-sophisticated methods are needed to achieve a particular level of precision for a given application (e.g. simulations to measure the non-linear evolution of baryon acoustic oscillations). I focus on SPT in this note and show that its predictions differ only by about a factor of two or less from the measured suppression inferred from both powerlaw and $Lambda$CDM $N$-body simulations. It should be possible to improve the accuracy of these predictions through using more-sophisticated perturbation theory models. An appendix compares power spectrum measurements from the powerlaw simulations at outputs where box-scale effects are minimal to perturbation theory models and previously-published fitting functions. These power spectrum measurements are included with this paper to aid efforts to develop new perturbation theory models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا