ترغب بنشر مسار تعليمي؟ اضغط هنا

The merger of two white dwarfs (a.k.a. double degenerate merger) has often been cited as a potential progenitor of type Ia supernovae. Here we combine population synthesis, merger and explosion models with radiation-hydrodynamics light-curve models t o study the implications of such a progenitor scenario on the observed type Ia supernova population. Our standard model, assuming double degenerate mergers do produce thermonuclear explosions, produces supernova light-curves that are broader than the observed type Ia sample. In addition, we discuss how the shock breakout and spectral features of these double degenerate progenitors will differ from the canonical bare Chandrasekhar-massed explosion models. We conclude with a discussion of how one might reconcile these differences with current observations.
Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae, they do produce transients that will be observed by upcoming ground-based su rveys and NASA satellites. Here we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these failed supernovae: supernovae with considerable fallback, accretion induced collapse of white dwarfs, and energetic helium flashes (also known as type .Ia supernovae).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا