ترغب بنشر مسار تعليمي؟ اضغط هنا

Under the paradigm of caching, partial data is delivered before the actual requests of users are known. In this paper, this problem is modeled as a canonical distributed source coding problem with side information, where the side information represen ts the users requests. For the single-user case, a single-letter characterization of the optimal rate region is established, and for several important special cases, closed-form solutions are given, including the scenario of uniformly distributed user requests. In this case, it is shown that the optimal caching strategy is closely related to total correlation and Wyners common information. Using the insight gained from the single-user case, three two-user scenarios admitting single-letter characterization are considered, which draw connections to existing source coding problems in the literature: the Gray--Wyner system and distributed successive refinement. Finally, the model studied by Maddah-Ali and Niesen is rephrased to make a comparison with the considered information-theoretic model. Although the two caching models have a similar behavior for the single-user case, it is shown through a two-user example that the two caching models behave differently in general.
In wireless sensor networks, various applications involve learning one or multiple functions of the measurements observed by sensors, rather than the measurements themselves. This paper focuses on type-threshold functions, e.g., the maximum and indic ator functions. Previous work studied this problem under the collocated collision network model and showed that under many probabilistic models for the measurements, the achievable computation rates converge to zero as the number of sensors increases. This paper considers two network models reflecting both the broadcast and superposition properties of wireless channels: the collocated linear finite field network and the collocated Gaussian network. A general multi-round coding scheme exploiting not only the broadcast property but particularly also the superposition property of the networks is developed. Through careful scheduling of concurrent transmissions to reduce redundancy, it is shown that given any independent measurement distribution, all type-threshold functions can be computed reliably with a non-vanishing rate in the collocated Gaussian network, even if the number of sensors tends to infinity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا