ترغب بنشر مسار تعليمي؟ اضغط هنا

356 - Chian-Chou Chen 2014
We analyse HST WFC3/$H_{160}$-band observations of a sample of 48 ALMA-detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79$pm$17% of the SMGs in the $H_{16 0}$-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the non-detections are SMGs with 870$mu$m fluxes of $S_{870} < $3 mJy. With a surface brightness limit of $mu_H sim $26 mag arcsec$^{-2}$, we find that 82$pm$9% of the $H_{160}$-band detected SMGs at $z =$ 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sersic fit to the $H_{160}$ surface-brightness profiles we derive a median Sersic index of $n = $1.2$pm$0.3 and a median half-light radius of $r_e = $4.4$^{+1.1}_{-0.5}$ kpc for our SMGs at $z = $1-3. We also find significant displacements between the positions of the $H_{160}$-component and 870$mu$m emission in these systems, suggesting that the dusty star-burst regions and less-obscured stellar distribution are not co-located. We find significant differences in the sizes and the Sersic index between our $z = $2-3 SMGs and $z sim $2 quiescent galaxies, suggesting a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead $zsim$2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the $z = $2-3 SMGs with $S_{870} gtrsim $2 mJy are early/mid-stage major mergers.
203 - Chian-Chou Chen 2013
We obtained SMA observations of eight faint (intrinsic 850 $mu$m fluxes $<$ 2 mJy) submillimeter galaxies (SMGs) discovered in SCUBA images of the massive lensing cluster fields A370, A2390, and A1689 and detected five. In total, we obtain 5 SMA dete ctions, all of which have de-lensed fluxes $<$1 mJy with estimated total infrared luminosities 10$^{10}-10^{12}$ $L_odot$, comparable to luminous infrared galaxies (LIRGs) and normal star-forming galaxies. Based on the latest number counts, these galaxies contribute $sim$70% of the 850 $mu$m extragalactic background light and represent the dominant star-forming galaxy population in the dusty universe. However, only 40$^{+30}_{-16}$% of our faint SMGs would be detected in deep optical or near-infrared surveys, which suggests many of these sources are at high redshifts ($z gtrsim 3$) or extremely dusty, and they are not included in current star formation history estimates.
We use the SCUBA-2 submillimeter camera mounted on the JCMT to obtain extremely deep number counts at 450 and 850um. We combine data on two cluster lensing fields, A1689 and A370, and three blank fields, CDF-N, CDF-S, and COSMOS, to measure the count s over a wide flux range at each wavelength. We use statistical fits to broken power law representations to determine the number counts. This allows us to probe to the deepest possible level in the data. At both wavelengths our results agree well with the literature in the flux range over which they have been measured, with the exception of the 850um counts in CDF-S, where we do not observe the counts deficit found by previous single-dish observations. At 450um, we detect significant counts down to ~1mJy, an unprecedented depth at this wavelength. By integrating the number counts above this flux limit, we measure 113.9^{+49.7}_{-28.4} Jydeg^{-2} of the 450um extragalactic background light (EBL). The majority of this contribution is from sources with S_450um between 1-10mJy, and these sources are likely to be the ones that are analogous to the local luminous infrared galaxies (LIRGs). At 850um, we measure 37.3^{+21.1}_{-12.9} Jydeg^{-2} of the EBL. Because of the large systematic uncertainties on the COBE measurements, the percentage of the EBL we resolve could range from 48%-153% (44%-178%) at 450 (850)um. Based on high-resolution SMA observations of around half of the 4sigma 850um sample in CDF-N, we find that 12.5^{+12.1}_{-6.8}% of the sources are blends of multiple fainter sources. This is a low multiple fraction, and we find no significant difference between our original SCUBA-2 850um counts and the multiplicity corrected counts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا