ترغب بنشر مسار تعليمي؟ اضغط هنا

The degeneracy and spatial support of pseudo-Landau levels (pLLs) in strained honeycomb lattices systematically depends on the geometry -- for instance, in hexagonal and rectangular flakes the 0th pLL displays a twofold increased degeneracy, while th e characteristic sublattice polarization of the 0th pLL is only fully realized in a zigzag-terminated triangle. These features are dictated by algebraic constraints in the atomistic theory, and signify a departure from the standard picture in which all qualitative differences between pLLs and Landau levels induced by a magnetic field trace back to the valley-antisymmetry of the pseudomagnetic field.
We investigate the nearest level spacing statistics of open chaotic wave systems. To this end we derive the spacing distributions for the three Wigner ensembles in the one-channel case. The theoretical results give a clear physical meaning of the mod ifications on the spacing distributions produced by the coupling to the environment. Based on the analytical expressions obtained, we then propose general expressions of the spacing distributions for any number of channels, valid from weak to strong coupling. The latter expressions contain one free parameter. The surmise is successfully compared with numerical simulations of non-Hermitian random matrices and with experimental data obtained with a lossy electromagnetic chaotic cavity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا