ترغب بنشر مسار تعليمي؟ اضغط هنا

The black hole candidate, XTE J1752-223, was discovered in 2009 October when it entered an outburst. We obtained radio data from the Australia Telescope Compact Array for the duration of the ~9 month event. The lightcurves show that the radio emissio n from the compact jet persisted for the duration of an extended hard state and through the transition to the intermediate state. The flux then rose rapidly by a factor of 10 and the radio source entered a series of at least 7 maxima, the first of which was likely to be emission associated with the compact jet. The subsequent 6 flares were accompanied by variable behaviour in terms of radio spectrum, degree of linear polarisation, morphology and associated X-ray behaviour. They were, however, remarkably similar in terms of the estimated minimum power required to launch such an ejection event. We compare the timing of radio peaks with the location of the ejecta, imaged by contemporaneous VLBI experiments. We then discuss the mechanism behind the events, in terms of whether discrete ejections is the most likely description of the behaviour. One ejection, at least, appears to be travelling with apparent superluminal motion. The range of properties, however, suggests that mutiple mechanisms may be relevant and that at least some of the emission is coming from shocked interactions amongst the ejecta and between the ejecta and the interstellar medium. We also compare the radio flux density with the X-ray source during the hard state and conclude that XTE J1752-223 is a radio-weak/X-ray-bright outlier on the universal correlation for black hole transient sources.
The black hole X-ray transient, XTE J1118+480, has now twice been observed in outburst - 2000 and 2005 - and on both occasions remained in the low/hard X-ray spectral state. Here we present radio, infrared, optical, soft X-ray and hard X-ray observat ions of the more recent outburst. We find that the lightcurves have very different morphologies compared with the 2000 event and the optical decay is delayed relative to the X-ray/radio. We attribute this lesser degree of correlation to contributions of emission from multiple components, in particular the jet and accretion disc. Whereas the jet seemed to dominate the broadband spectrum in 2000, in 2005 the accretion disc seems to be more prominent and we use an analysis of the lightcurves and spectra to distinguish between the jet and disc emission. There also appears to be an optically thin component to the radio emission in the 2005 data, possibly associated with multiple ejection events and decaying as the outburst proceeds. These results add to the discussion that the term low/hard state covers a wider range of properties than previously thought, if it is to account for XTE J1118+480 during these two outbursts.
XTE J1748-288 is a black hole X-ray transient which went into outburst in 1998 June. The X-ray lightcurves showed canonical morphologies, with minor variations on the ``Fast Rise Exponential Decay profile. The radio source, however, reached an unusua lly high flux density of over 600 mJy. This high radio flux was accompanied by an exceptional (>20%) fractional linear polarisation, the variability of which was anti-correlated with the flux density. We use this variability to discuss possible depolarisation mechanisms and to predict the underlying behaviour of the (unresolved) core/jet components.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا