ترغب بنشر مسار تعليمي؟ اضغط هنا

We report measurements of Shubnikov-de Haas (SdH) oscillations in single crystals of BiTeCl at magnetic fields up to 31 T and at temperatures as low as 0.4 K. Two oscillation frequencies were resolved at the lowest temperatures, $F_{1}=65 pm 4$ Tesla and $F_{2}=156 pm 5$ Tesla. We also measured the infrared optical reflectance $left(cal R(omega)right)$ and Hall effect; we propose that the two frequencies correspond respectively to the inner and outer Fermi sheets of the Rashba spin-split bulk conduction band. The bulk carrier concentration was $n_{e}approx1times10^{19}$ cm$^{-3}$ and the effective masses $m_{1}^{*}=0.20 m_{0}$ for the inner and $m_{2}^{*}=0.27 m_{0}$ for the outer sheet. Surprisingly, despite its low effective mass, we found that the amplitude of $F_{2}$ is very rapidly suppressed with increasing temperature, being almost undetectable above $Tapprox4$ K.
81 - C. Martin , E. D. Mun , H. Berger 2012
We report the observation of Shubnikov-de Haas (SdH) oscillations in single crystals of the Rashba spin-splitting compound BiTeI, from both longitudinal ($R_{xx}(B)$) and Hall ($R_{xy}(B)$) magnetoresistance. Under magnetic field up to 65 T, we resol ved unambiguously only one frequency $F = 284.3pm 1.3$ T, corresponding to a Fermi momentum $k_{F} = 0.093pm 0.002$AA$^{-1}$.The amplitude of oscillations is strongly suppressed by tilting magnetic field, suggesting a highly two-dimensional Fermi surface. Combining with optical spectroscopy, we show that quantum oscillations may be consistent with a bulk conduction band having a Rashba splitting momentum $k_{R}=0.046pm$AA$^{-1}$.
Reflection and transmission as a function of temperature have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu$_{2}$OSeO$_{3}$ utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature ($T_{c}sim 60$~K). Assignments to strong far infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا