ترغب بنشر مسار تعليمي؟ اضغط هنا

RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is current ly performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression.
Competition is one of the most fundamental phenomena in physics, biology and economics. Recent studies of the competition between innovations have highlighted the influence of switching costs and interaction networks, but the problem is still puzzlin g. We introduce a model that reveals a novel multi-percolation process, which governs the struggle of innovations trying to penetrate a market. We find that innovations thrive as long as they percolate in a population, and one becomes dominant when it is the only one that percolates. Besides offering a theoretical framework to understand the diffusion of competing innovations in social networks, our results are also relevant to model other problems such as opinion formation, political polarization, survival of languages and the spread of health behavior.
Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.
The promotion of cooperation on spatial lattices is an important issue in evolutionary game theory. This effect clearly depends on the update rule: it diminishes with stochastic imitative rules whereas it increases with unconditional imitation. To st udy the transition between both regimes, we propose a new evolutionary rule, which stochastically combines unconditional imitation with another imitative rule. We find that, surprinsingly, in many social dilemmas this rule yields higher cooperative levels than any of the two original ones. This nontrivial effect occurs because the basic rules induce a separation of timescales in the microscopic processes at cluster interfaces. The result is robust in the space of 2x2 symmetric games, on regular lattices and on scale-free networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا