ترغب بنشر مسار تعليمي؟ اضغط هنا

The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as pos sible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.
The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the ^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous emission. The molecules are detected by resonance enhanced two-photon ionization. Using accurate quantum chemistry calculations of the potential energy curves and transition dipole moment, we interpret the observed photoassociation process as occurring at short internuclear distance, in contrast with most previous cold atom photoassociation studies. The vibrational levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^- electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation limit. The computed vibrational distribution of the produced molecules shows that they are stabilized in deeply bound vibrational states of the lowest triplet state. We also predict that a noticeable fraction of molecules is produced in the lowest level of the electronic ground state.
123 - C.Gabbanini , O.Dulieu 2011
Ultracold metastable RbCs molecules are observed in a double species MOT through photoassociation near the Rb(5S$_{1/2}$)+Cs(6P$_{3/2}$) dissociation limit followed by radiative stabilization. The molecules are formed in their lowest triplet electron ic state and are detected by resonant enhanced two-photon ionization through the previously unobserved $(3)^{3}Pi leftarrow a^{3}Sigma^{+}$ band. The large rotational structure of the observed photoassociation lines is assigned to the lowest vibrational levels of the $0^+,0^-$ excited states correlated to the Rb(5P$_{1/2}$)+Cs(6S$_{1/2}$) dissociation limit. This demonstrates the possibility to induce direct photoassociation in heteronuclear alkali-metal molecules at short internuclear distance, as pointed out in [J. Deiglmayr textit{et al.}, Phys. Rev. Lett. textbf{101}, 13304 (2008)].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا