ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area Survey (CALIFA), a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA mo ther sample was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 and 79.2 and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 10^9.7 and 10^11.4Msun. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses < 10^9.7Msun) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form < 10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. We also present a number of value-added quantities determined for the galaxies in the CALIFA sample. We explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies.
Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.
We intend to show that it is possible to derive the physical parameters of galaxies from their broad-band spectral energy distribution out to a redshift of 1.2. This method has the potential to yield the physical parameters of all galaxies in a singl e field in a homogeneous way. We use an extensive dataset, assembled in the context of the VVDS survey, which reaches from the UV to the IR and covers a sample of 84073 galaxies over an area of 0.89 deg$^2$. We also use a library of 100000 model galaxies with a large variety of star formation histories (in particular including late bursts of star formation). We find that we can determine the physical parameters stellar mass, age and star formation rate with good confidence. We validate the star formation rate determinations in particular by comparing it to a sample of spectroscopically observed galaxies with an emission line measurement. We use our sample to build the number density function of galaxies as a function of stellar mass, specific star formation rate and redshift. We then study whether the stellar mass function at a later time can be predicted from the stellar mass function and star formation rate distribution at an earlier time. We find that the predicted growth in stellar mass from star formation agrees with the observed one. However, the predicted stellar mass density for massive galaxies is lower than observed, while the mass density of intermediate mass galaxies is overpredicted. When comparing with a direct measurement of the major merger rate from the VVDS survey we find that major mergers are sufficient to explain about a third of the mass build-up at the massive end, while the rest is likely contributed through minor mergers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا