ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolayer structures made up of purely one kind of atoms are fascinating. Many kinds of honeycomb systems including carbon, silicon, germanium, tin, phosphorus and arsenic have been shown to be stable. However, so far the structures are restricted to group IV and V elements. In this letter, we systematically investigate the stability of monolayer structures made up of aluminium, in four different geometric configurations (planar, buckled, puckered and triangular), by employing density functional theory based electronic structure calculation. Our results on cohesive energy and phonon dispersion predict that only planar honeycomb structure made up of aluminium is stable. We call it aluminene according to the standard naming convention. It is a metal. Results of electronic band structure suggest that it may be regarded as a highly hole doped graphene. We also present the tight-binding model and the Dirac theory to discuss the electronic properties of aluminene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا