ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate thermodynamic properties like specific heat $c_{V}$ and susceptibility $chi$ in anisotropic $J_1$-$J_2$ triangular quantum spin systems ($S=1/2$). As a universal tool we apply the finite temperature Lanczos method (FTLM) based on exact diagonalization of finite clusters with periodic boundary conditions. We use clusters up to $N=28$ sites where the thermodynamic limit behavior is already stably reproduced. As a reference we also present the full diagonalization of a small eight-site cluster. After introducing model and method we discuss our main results on $c_V(T)$ and $chi(T)$. We show the variation of peak position and peak height of these quantities as function of control parameter $J_2/J_1$. We demonstrate that maximum peak positions and heights in Neel phase and spiral phases are strongly asymmetric, much more than in the square lattice $J_1$-$J_2$ model. Our results also suggest a tendency to a second side maximum or shoulder formation at lower temperature for certain ranges of the control parameter. We finally explicitly determine the exchange model of the prominent triangular magnets Cs$_2$CuCl$_4$ and Cs$_{2}$CuBr$_{4}$ from our FTLM results.
We undertook a mutually complementary analytic and computational study of the full-fledged spherical (3D) quantum rotor subject to combined orienting and aligning interactions characterized, respectively, by dimensionless parameters $eta$ and $zeta$. By making use of supersymmetric quantum mechanics (SUSY QM), we found two sets of conditions under which the problem of a spherical quantum pendulum becomes analytically solvable. These conditions coincide with the loci $zeta=frac{eta^2}{4k^2}$ of the intersections of the eigenenergy surfaces spanned by the $eta$ and $zeta$ parameters. The integer topological index $k$ is independent of the eigenstate and thus of the projection quantum number $m$. These findings have repercussions for rotational spectra and dynamics of molecules subject to combined permanent and induced dipole interactions.
We make use of supersymmetric quantum mechanics (SUSY QM) to find three sets of conditions under which the problem of a planar quantum pendulum becomes analytically solvable. The analytic forms of the pendulums eigenfuntions make it possible to find analytic expressions for observables of interest, such as the expectation values of the angular momentum squared and of the orientation and alignment cosines as well as of the eigenenergy. Furthermore, we find that the topology of the intersections of the pendulums eigenenergy surfaces can be characterized by a single integer index whose values correspond to the sets of conditions under which the analytic solutions to the quantum pendulum problem exist.
We show that combined permanent and induced electric dipole interactions of polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as al ignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
The magnetic correlations, local moments and the susceptibility in the correlated 2D Kondo lattice model at half filling are investigated. We calculate their systematic dependence on the control parameters J_K/t and U/t. An unbiased and reliable exac t diagonalization (ED) approach for ground state properties as well as the finite temperature Lanczos method (FTLM) for specific heat and the uniform susceptibility are employed for small tiles on the square lattice. They lead to two major results: Firstly we show that the screened local moment exhibits non-monotonic behavior as a function of U for weak Kondo coupling J_K. Secondly the temperature dependence of the susceptibility obtained from FTLM allows to extract the dependence of the characteristic Kondo temperature scale T* on the correlation strength U. A monotonic increase of T* for small U is found resolving the ambiguity from earlier investigations. In the large U limit the model is equivalent to the 2D Kondo necklace model with two types of localized spins. In this limit the numerical results can be compared to those of the analytical bond operator method in mean field treatment and excellent agreement for the total paramagnetic moment is found, supporting the reliability of both methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا