ترغب بنشر مسار تعليمي؟ اضغط هنا

49 - Weiyi Wu , Bryan Ford 2015
The massive parallelism and resource sharing embodying todays cloud business model not only exacerbate the security challenge of timing channels, but also undermine the viability of defenses based on resource partitioning. We propose hypervisor-enfor ced timing mitigation to control timing channels in cloud environments. This approach closes reference clocks internal to the cloud by imposing a deterministic view of time on guest code, and uses timing mitigators to pace I/O and rate-limit potential information leakage to external observers. Our prototype hypervisor is the first system to mitigate timing-channel leakage across full-scale existing operating systems such as Linux and applications in arbitrary languages. Mitigation incurs a varying performance cost, depending on workload and tunable leakage-limiting parameters, but this cost may be justified for security-critical cloud applications and data.
The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To p rotect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees Ss exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victims Internet access, the authoritys secret key, and several witnesses secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.
Social networking sites supporting federated identities offer a convenient and increasingly popular mechanism for cross-site authentication. Unfortunately, they also exacerbate many privacy and tracking risks. We propose Crypto-Book, an anonymizing l ayer enabling cross-site authentication while reducing these risks. Crypto-Book relies on a set of independently managed servers that collectively assign each social network identity a public/private keypair. Only an identitys owner learns all the private key shares, and can therefore construct the private key, while all participants can obtain any users public key, even if the corresponding private key has yet to be retrieved. Having obtained an appropriate key set, a user can then leverage anonymous authentication techniques such as linkable ring signatures to log into third-party web sites while preserving privacy. We have implemented a prototype of Crypto-Book and demonstrate its use with three applications: a Wiki system, an anonymous group communication system, and a whistleblower submission system. Our results show that for anonymity sets of size 100, Crypto-Book login takes 0.56s for signature generation by the client, 0.38s for signature verification on the server, and requires 5.6KB of communication bandwidth.
Distributed systems achieve scalability by distributing load across many machines, but wide-area deployments can introduce worst-case response latencies proportional to the networks diameter. Crux is a general framework to build locality-preserving d istributed systems, by transforming an existing scalable distributed algorithm A into a new locality-preserving algorithm ALP, which guarantees for any two clients u and v interacting via ALP that their interactions exhibit worst-case response latencies proportional to the network latency between u and v. Crux builds on compact-routing theory, but generalizes these techniques beyond routing applications. Crux provides weak and strong consistency flavors, and shows latency improvements for localized interactions in both cases, specifically up to several orders of magnitude for weakly-consistent Crux (from roughly 900ms to 1ms). We deployed on PlanetLab locality-preservi
Obtaining and maintaining anonymity on the Internet is challenging. The state of the art in deployed tools, such as Tor, uses onion routing (OR) to relay encrypted connections on a detour passing through randomly chosen relays scattered around the In ternet. Unfortunately, OR is known to be vulnerable at least in principle to several classes of attacks for which no solution is known or believed to be forthcoming soon. Current approaches to anonymity also appear unable to offer accurate, principled measurement of the level or quality of anonymity a user might obtain. Toward this end, we offer a high-level view of the Dissent project, the first systematic effort to build a practical anonymity system based purely on foundations that offer measurable and formally provable anonymity properties. Dissent builds on two key pre-existing primitives - verifiable shuffles and dining cryptographers - but for the first time shows how to scale such techniques to offer measurable anonymity guarantees to thousands of participants. Further, Dissent represents the first anonymity system designed from the ground up to incorporate some systematic countermeasure for each of the major classes of known vulnerabilities in existing approaches, including global traffic analysis, active attacks, and intersection attacks. Finally, because no anonymity protocol alone can address risks such as software exploits or accidental self-identification, we introduce WiNon, an experimental operating system architecture to harden the uses of anonymity tools such as Tor and Dissent against such attacks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا