ترغب بنشر مسار تعليمي؟ اضغط هنا

A reliable and user-friendly characterisation of nano-objects in a target material is presented here in the form of a software data analysis package for interpreting small-angle X-ray scattering (SAXS) patterns. When provided with data on absolute sc ale with reasonable uncertainty estimates, the software outputs (size) distributions in absolute volume fractions complete with uncertainty estimates and minimum evidence limits, and outputs all distribution modes of a user definable range of one or more model parameters. A multitude of models are included, including prolate and oblate nanoparticles, core-shell objects, polymer models (Gaussian chain and Kholodenko worm) and a model for densely packed spheres (using the LMA-PY approximations). The McSAS software can furthermore be integrated as part of an automated reduction and analysis procedure in laboratory instruments or at synchrotron beamlines.
107 - Brian Richard Pauw 2013
For obtaining reliable nanostructural details of large amounts of sample --- and if it is applicable --- Small-Angle Scattering (SAS) is a prime technique to use. It promises to obtain bulk-scale, statistically sound information on the morphological details of the nanostructure, and has thus led to many a researcher investing their time in it over the last eight decades of development. Due to pressure both from scientists requesting more details on increasingly complex nanostructures, as well as the ever improving instrumentation leaving less margin for ambiguity, small-angle scattering methodologies have been evolving at a high pace over the last few decades. As the quality of any results can only be as good as the data that goes into these methodologies, the improvements in data collection and all imaginable data correction steps are reviewed here. This work is intended to provide a comprehensive overview of all data corrections, to aid the small-angle scatterer to decide which are relevant for their measurement and how these corrections are performed. Clear mathematical descriptions of the corrections are provided where feasible. Furthermore, as no quality data exists without a decent estimate of its precision, the error estimation and propagation through all these steps is provided alongside the corrections. With these data corrections, the collected small-angle scattering pattern can be made of the highest standard allowing for authoritative nanostructural characterisation through its analysis. A brief background of small-angle scattering, the instrumentation developments over the years, and pitfalls that may be encountered upon data interpretations are provided as well.
Recently, a Monte Carlo method has been presented which allows for the form-free retrieval of size distributions from isotropic scattering patterns, complete with uncertainty estimates linked to the data quality. Here, we present an adaptation to thi s method allowing for the fitting of anisotropic 2D scattering patterns. The model consists of a finite number of non-interacting ellipsoids of revolution (but would work equally well for cylinders), polydisperse in both dimensions, and takes into account disorientation in the plane parallel to the detector plane. The method application results in three form-free distributions, two for the ellipsoid dimensions, and one for the orientation distribution. It is furthermore shown that a morphological restriction is needed to obtain a unique solution.
Usually, equal time is given to measuring the background and the sample, or even a longer background measurement is taken as it has so few counts. While this seems the right thing to do, the relative error after background subtraction improves when m ore time is spent counting the measurement with the highest amount of scattering. As the available measurement time is always limited, a good division must be found between measuring the background and sample, so that the uncertainty of the background-subtracted intensity is as low as possible. Herein outlined is the method to determine how best to divide measurement time between a sample and the background, in order to minimize the relative uncertainty. Also given is the relative reduction in uncertainty to be gained from the considered division. It is particularly useful in the case of scanning diffractometers, including the likes of Bonse-Hart cameras, where the measurement time division for each point can be optimized depending on the signal-to-noise ratio.
Monte-Carlo (MC) methods, based on random updates and the trial-and-error principle, are well suited to retrieve particle size distributions from small-angle scattering patterns of dilute solutions of scatterers. The size sensitivity of size determin ation methods in relation to the range of scattering vectors covered by the data is discussed. Improvements are presented to existing MC methods in which the particle shape is assumed to be known. A discussion of the problems with the ambiguous convergence criteria of the MC methods are given and a convergence criterion is proposed, which also allows the determination of uncertainties on the determined size distributions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا