ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a comprehensive X-ray point source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new, 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. Our surv ey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35 erg s^-1 in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping HST observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background AGN. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10^35 erg s^-1 and 10^36 erg s^-1, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10^37 erg s^-1) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main sequence companions formed during an epoch of elevated star formation ~0.5 Gyr ago.
We present the results of a 100 ks {it Chandra} observation of the NGC 404 nuclear region. The long exposure and excellent spatial resolution of {it Chandra} has enabled us to critically examine the nuclear environment of NGC 404, which is known to h ost a nuclear star cluster and potentially an intermediate-mass black hole (on the order of a few times $10^5$ Msun). We find two distinct X-ray sources: a hard, central point source coincident with the optical and radio centers of the galaxy, and a soft extended region that is coincident with areas of high H$alpha$ emission and likely recent star formation. When we fit the 0.3-8 keV spectra of each region separately, we find the hard nuclear point source to be dominated by a power law (PL = 1.88), while the soft off-nuclear region is best fit by a thermal plasma model ($kT$ = 0.67 keV). We therefore find evidence for both a power law component and hot gas in the nuclear region of NGC 404. We estimate the 2-10 keV luminosity to be 1.3$^{+0.8}_{-0.5}times10^{37}$ erg s$^{-1}$. A low-level of diffuse X-ray emission is detected out to $sim$15as ($sim$0.2 kpc) from the nucleus. We compare our results to the observed relationships between power law photon index and Eddington ratio for both X-ray binaries and low luminosity active galaxies and find NGC 404 to be consistent with other low luminosity active galaxies. We therefore favor the conclusion that NGC 404 harbors an intermediate-mass black hole accreting at a very low level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا