ترغب بنشر مسار تعليمي؟ اضغط هنا

In this demonstration, we will present the worlds first molecular multiple-input multiple-output (MIMO) communication link to deliver two data streams in a spatial domain. We show that chemical signals such as concentration gradients could be used in MIMO fashion to transfer sequential data. Until now it was unclear whether MIMO techniques, which are used extensively in modern radio communication, could be applied to molecular communication. In the demonstration, using our devised MIMO apparatus and carefully designed detection algorithm, we will show that we can achieve about 1.7 times higher data rate than single input single output (SISO) molecular communication systems.
In this paper, we propose a novel design for molecular communication in which both the transmitter and the receiver have, in a 3-dimensional environment, multiple bulges (in RF communication this corresponds to antenna). The proposed system consists of a fluid medium, information molecules, a transmitter, and a receiver. We simulate the system with a one-shot signal to obtain the channels finite impulse response. We then incorporate this result within our mathematical analysis to determine interference. Molecular communication has a great need for low complexity, hence, the receiver may have incomplete information regarding the system and the channel state. Thus, for the cases of limited information set at the receiver, we propose three detection algorithms, namely adaptive thresholding, practical zero forcing, and Genie-aided zero forcing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا