ترغب بنشر مسار تعليمي؟ اضغط هنا

The equipartition or minimum-energy calculation is a well-known procedure for estimating magnetic field strength and total energy in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. In one of our previous pape rs we have offered a modified equipartition calculation for supernova remnants (SNRs) with spectral indices 0.5<alpha <1. Here we extend the analysis to SNRs with alpha =0.5 and alpha =1.
Determination of the magnetic field strength in the interstellar medium is one of the most complex tasks of contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a few very limited methods. Bes ides Zeeman effect and Faraday rotation, the equipartition or the minimum-energy calculation is a widespread method for estimating magnetic field strength and energy contained in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. Despite of its approximate character, it remains a useful tool, especially when there is no other data about the magnetic field in a source. In this paper we give a modified calculation which we think is more appropriate for estimating magnetic field strengths and energetics in supernova remnants (SNRs). Finally, we present calculated estimates of the magnetic field strengths for all Galactic SNRs for which the necessary observational data are available. The web application for calculation of the magnetic field strength of SNRs is available at http://poincare.matf.bg.ac.rs/~arbo/eqp/.
151 - B. Arbutina , D. Ilic , K. Stavrev 2009
We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and H$alpha$ filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supe rnova remnants (identified as sources with enhanced [SII] emission relative to their H$alpha$ emission) in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H$alpha$ emission that probably represent uncatalogued HII regions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا