ترغب بنشر مسار تعليمي؟ اضغط هنا

The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from 4 curvature wav efront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intra- and extra-focal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.
Using the entire CLEO-c psi(3770) to DDbar event sample, corresponding to an integrated luminosity of 818 pb^-1 and approximately 5.4 x 10^6 DDbar events, we measure the form factors for the decays D0 to rho- e+ nu_e and D+ to rho0 e+ nu_e for the fi rst time and the branching fractions with improved precision. A four-dimensional unbinned maximum likelihood fit determines the form factor ratios to be: V(0)/A_1(0) = 1.48 +- 0.15 +- 0.05 and A_2(0)/A_1(0)= 0.83 +- 0.11 +- 0.04. Assuming CKM unitarity, the known D meson lifetimes and our measured branching fractions we obtain the form factor normalizations A_1(0), A_2(0), and V(0). We also present a measurement of the branching fraction for D^+ to omega e^+ nu_e with improved precision.
We discuss some of the key science questions that are bringing particle physicists and astrophysicists together, and comment on some of the cultural and funding issues that have arisen as these two communities become increasingly intertwined.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا