ترغب بنشر مسار تعليمي؟ اضغط هنا

147 - Bethan Cropp , 2013
There are many logically and computationally distinct characterizations of the surface gravity of a horizon, just as there are many logically rather distinct notions of horizon. Fortunately, in standard general relativity, for stationary horizons, mo st of these characterizations are degenerate. However, in modified gravity, or in analogue spacetimes, horizons may be non-Killing or even non-null, and hence these degeneracies can be lifted. We present a brief overview of the key issues, specifically focusing on horizons in analogue spacetimes and universal horizons in modified gravity.
68 - Bethan Cropp 2011
In this thesis we consider several aspects of general relativity relating to exact solutions of the Einstein equations. In the first part gravitational plane waves in the Rosen form are investigated, and we develop a formalism for writing down any ar bitrary polarisation in this form. In addition to this we have extended this algorithm to an arbitrary number of dimensions, and have written down an explicit solution for a circularly polarized Rosen wave. In the second part a particular, ultra-local limit along an arbitrary timelike geodesic in any spacetime is constructed, in close analogy with the well-known lightlike Penrose limit. This limit results in a Bianchi type I spacetime. The properties of these spacetimes are examined in the context of this limit, including the Einstein equations, stress-energy conservation and Raychaudhuri equation. Furthermore the conditions for the Bianchi type I spacetime to be diagonal are explicitly set forward, and the effect of the limit on the matter content of a spacetime are examined.
72 - Bethan Cropp 2010
Strong-field gravitational plane waves are often represented in either the Rosen or Brinkmann forms. These forms are related by a coordinate transformation, so they should describe essentially the same physics, but the two forms treat polarization st ates quite differently. Both deal well with linear polarizations, but there is a qualitative difference in the way they deal with circular, elliptic, and more general polarization states. In this article we will describe a general algorithm for constructing arbitrary polarization states in the Rosen form.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا