ترغب بنشر مسار تعليمي؟ اضغط هنا

The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. With these mixed modes, we aim at determining seismic markers of stellar evolution. Kepler asteroseismic data were selected to map various evolutionary stages and stellar masses. Seismic evolutionary tracks were then drawn with the combination of the frequency and period spacings. We measured the asymptotic period spacing for more than 1170 stars at various evolutionary stages. This allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. We present clear quantified asteroseismic definitions that characterize the change in the evolutionary stages, in particular the transition from the subgiant stage to the early red giant branch, and the end of the horizontal branch.The seismic information is so precise that clear conclusions can be drawn independently of evolution models. The quantitative seismic information can now be used for stellar modeling, especially for studying the energy transport in the helium-burning core or for specifying the inner properties of stars entering the red or asymptotic giant branches. Modeling will also allow us to study stars that are identified to be in the helium-subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.
The space-borne missions CoRoT and Kepler have opened a new era in stellar physics, especially for evolved stars, with precise asteroseismic measurements that help determine precise stellar parameters and perform ensemble astero seismology. This pape r deals with the quality of the information that we can retrieve from the oscillations. It focusses on the conditions for obtaining the most accurate measurement of the radial and non-radial oscillation patterns. This accuracy is a prerequisite for making the best with asteroseismic data. From radial modes, we derive proxies of the stellar mass and radii with an unprecedented accuracy for field stars. For dozens of subgiants and thousands of red giants, the identification of mixed modes (corresponding to gravity waves propagating in the core coupled to pressure waves propagating in the envelope) indicates unambiguously their evolutionary status. As probes of the stellar core, these mixed modes also reveal the internal differential rotation and show the spinning down of the core rotation of stars ascending the red giant branch. A toy model of the coupling of waves constructing mixed modes is exposed, for illustrating many of their features.
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secret s: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to emph{paparazze} the red giants according to the seismic pictures we have from their interiors.
219 - N. Ozel , B. Mosser , M.A. Dupret 2013
The CoRoT short asteroseismic runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report the observation and modeling of the F5V star HD 175272. Our aim is to define a method for extrac ting as much information as possible from a noisy oscillation spectrum. We followed a differential approach that consists of using a well-known star as a reference to characterize another star. We used classical tools such as the envelope autocorrelation function to derive the global seismic parameters of the star. We compared HD 175272 with HD 181420 through a linear approach, because they appear to be asteroseismic twins. The comparison with the reference star enables us to substantially enhance the scientific output for HD 175272. First, we determined its global characteristics through a detailed seismic analysis of HD 181420. Second, with our differential approach, we measured the difference of mass, radius and age between HD 175272 and HD 181420. We have developed a general method able to derive asteroseismic constraints on a star even in case of low-quality data. %This method is based on the comparison to a star with common seismic and classical properties. Seismic data allow accurate measurements of radii and masses differences between the two stars. This method can be applied to stars with interesting properties but low signal-to-noise ratio oscillation spectrum, such as stars hosting an exoplanet or members of a binary system.
We report for the first time a parametric fit to the pattern of the ell = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes , we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of ell = 3 modes, of ell = 2 mixed modes, for the mode widths and amplitudes, and for the ell = 1 rotational splittings. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.
A short observing run with the spectrometer Harps at the ESO 3.6-m telescope was conducted in order to continue exploring the asteroseismic properties of F type stars. In fact, Doppler observations of F type on the main sequence are demanding and rem ain currently limited to a single case (HD 49933). Comparison with photometric results obtained with the CoRoT mission on similar stars will be possible with an enhanced set of observations. We selected the 4th magnitude F8V star HD 203608, in order to investigate the oscillating properties of a low-metallicity star of the old galactic disk. A 5-night asteroseismic observation program has been conducted in August 2006 with Harps. Spectra were reduced with the on-line data reduction software provided by the instrument. A new statistical approach has been developed for extracting the significant peaks in the Fourier domain. The oscillation spectrum shows a significant excess power in the frequency range [1.5, 3.0 mHz]. It exhibits a large spacing about 120.4 $mu$Hz at 2.5 mHz. Variations of the large spacing with frequency are clearly identified, which require an adapted asymptotic development. The modes identification is based on the unambiguous signature of 15 modes with $ell = 0$ and 1. This observation shows the potential diagnostic of asteroseismic constraints. Including them in the stellar modeling enhances significantly the precision on the physical parameters of cible, resulting in a much more precise position in the HR diagram. The age of the star is now determined in the range $7.25pm0.07$ Gyr.
110 - B. Mosser , F. Bouchy , M. Martic 2007
This paper reports a 9-night asteroseismic observation program conducted in January 2007 with the new spectrometer Sophie at the OHP 193-cm telescope, on the F5 IV-V target Procyon A. This first asteroseismic program with Sophie was intended to test the performance of the instrument with a bright but demanding asteroseismic target and was part of a multisite network. The Sophie spectra have been reduced with the data reduction software provided by OHP. The Procyon asteroseismic data were then analyzed with statistical tools. The asymptotic analysis has been conducted considering possible curvature in the echelle diagram analysis. These observations have proven the efficient performance of Sophie used as an asteroseismometer, and succeed in a clear detection of the large spacing. An echelle diagram based on the 54-$mu$Hz spacing shows clear ridges. Identification of the peaks exhibits large spacings varying from about 52 $mu$Hz to 56 $mu$Hz.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا