ترغب بنشر مسار تعليمي؟ اضغط هنا

We use empirical star formation histories (SFHs), measured from HST-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of ~50 nearby dwarf galaxies (6.5 < log M/M_* < 8.5, with metallicities ~10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared (NIR) and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6micron and 4.5micron bands, we find that modeled SEDs systematically over-predict observed luminosities by up to ~0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of ~2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5% to100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.
The meaningful comparison of models of galaxy evolution to observations is critically dependent on the accurate treatment of dust attenuation. To investigate dust absorption and emission in galaxies we have assembled a sample of ~1000 galaxies with u ltraviolet (UV) through infrared (IR) photometry from GALEX, SDSS, and Spitzer and optical spectroscopy from SDSS. The ratio of IR to UV emission (IRX) is used to constrain the dust attenuation in galaxies. We use the 4000A break as a robust and useful, although coarse, indicator of star formation history (SFH). We examine the relationship between IRX and the UV spectral slope (a common attenuation indicator at high-redshift) and find little dependence of the scatter on 4000A break strength. We construct average UV through far-IR spectral energy distributions (SEDs) for different ranges of IRX, 4000A break strength, and stellar mass (M_*) to show the variation of the entire SED with these parameters. When binned simultaneously by IRX, 4000A break strength, and M_* these SEDs allow us to determine a low resolution average attenuation curve for different ranges of M_*. The attenuation curves thus derived are consistent with a lambda^{-0.7} attenuation law, and we find no significant variations with M_*. Finally, we show the relationship between IRX and the global stellar mass surface density and gas-phase-metallicity. Among star forming galaxies we find a strong correlation between IRX and stellar mass surface density, even at constant metallicity, a result that is closely linked to the well-known correlation between IRX and star-formation rate.
The color of galaxies is a fundamental property, easily measured, that constrains models of galaxies and their evolution. Dust attenuation and star formation history (SFH) are the dominant factors affecting the color of galaxies. Here we explore the empirical relation between SFH, attenuation, and color for a wide range of galaxies, including early types. These galaxies have been observed by GALEX, SDSS, and Spitzer, allowing the construction of measures of dust attenuation from the ratio of infrared (IR) to ultraviolet (UV) flux and measures of SFH from the strength of the 4000A break. The empirical relation between these three quantities is compared to models that separately predict the effects of dust and SFH on color. This comparison demonstrates the quantitative consistency of these simple models with the data and hints at the power of multiwavelength data for constraining these models. The UV color is a strong constraint; we find that a Milky Way extinction curve is disfavored, and that the UV emission of galaxies with large 4000A break strengths is likely to arise from evolved populations. We perform fits to the relation between SFH, attenuation, and color. This relation links the production of starlight and its absorption by dust to the subsequent reemission of the absorbed light in the IR. Galaxy models that self-consistently treat dust absorption and emission as well as stellar populations will need to reproduce these fitted relations in the low-redshift universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا