ترغب بنشر مسار تعليمي؟ اضغط هنا

HST is commonly thought of as an optical-IR imaging or UV-spectroscopy observatory. However, the advent of WFC3-IR made it possible to do slitless infrared spectroscopic surveys over an area significant for galaxy evolution studies (~0.15 deg^2). Sli tless infrared spectroscopy is uniquely possible from space due to the reduced background. Redshift surveys with WFC3-IR offer probes of the astrophysics of the galaxy population at z=1-3 from line features, and the true redshift and spatial distribution of galaxies, that cannot be done with photometric surveys alone. While HST slitless spectroscopy is low spectral resolution, its high multiplex advantage makes it competitive with future ground based IR spectrographs, its flux calibration is stable, and its high spatial resolution allows measuring the spatial extent of emission lines, which only HST can do currently for large numbers of objects. A deeper slitless IR spectroscopic survey over hundreds of arcmin^2 (eg one or more GOODS fields) is one of the remaining niches for large galaxy evolution studies with HST, and would produce a sample of thousands of spectroscopically confirmed galaxies at 1<z<3 to H=25 and beyond, of great interest to a large community of investigators. Finally, although JWST multislit spectroscopy will outstrip HST in resolution and sensitivity, I believe it is critical to have a spectroscopic sample in hand before JWST flies. This applies scientifically, to be prepared for the questions we want to answer with JWST, and observationally, because JWSTs lifetime is limited and a classic problem in targeted spectroscopy has been the turn-around time for designing surveys and for deciding which classes of objects to target. This white paper is released publicly to stimulate open discussion of future large HST programs.
Astronomical software is now a fact of daily life for all hands-on members of our community. Purpose-built software for data reduction and modeling tasks becomes ever more critical as we handle larger amounts of data and simulations. However, the wri ting of astronomical software is unglamorous, the rewards are not always clear, and there are structural disincentives to releasing software publicly and to embedding it in the scientific literature, which can lead to significant duplication of effort and an incomplete scientific record. We identify some of these structural disincentives and suggest a variety of approaches to address them, with the goals of raising the quality of astronomical software, improving the lot of scientist-authors, and providing benefits to the entire community, analogous to the benefits provided by open access to large survey and simulation datasets. Our aim is to open a conversation on how to move forward. We advocate that: (1) the astronomical community consider software as an integral and fundable part of facility construction and science programs; (2) that software release be considered as integral to the open and reproducible scientific process as are publication and data release; (3) that we adopt technologies and repositories for releasing and collaboration on software that have worked for open-source software; (4) that we seek structural incentives to make the release of software and related publications easier for scientist-authors; (5) that we consider new ways of funding the development of grass-roots software; (6) and that we rethink our values to acknowledge that astronomical software development is not just a technical endeavor, but a fundamental part of our scientific practice.
130 - G.H. Rieke 2008
We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 um or extinction-corrected Paschen-alpha luminosities are consistent in the total infrared luminosity = L(TIR) ~ 10^10 L_sun range. MIPS 24 micron photometry can yield star formation rates accurately from this luminosity upward: SFR(M_sun/yr) = 7.8 x 10^-10 L(24 um, L_sun) from L(TIR) = 5 x 10^9 L_sun to 10^11 L_sun, and SFR = 7.8 x 10^-10 L(24 um, L_sun) x (7.76 x 10^-11 L(24))^0.048 for higher L(TIR). For galaxies with L(TIR) >= 10^10 L_sun, these new expressions should provide SFRs to within 0.2 dex. For L(TIR) >= 10^11 L_sun, we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Pa-alpha (and presumably using any other optical or near infrared recombination lines). As a part of this work, we constructed spectral energy distribution (SED) templates for eleven luminous and ultraluminous purely star forming infrared galaxies (LIRGs and ULIRGs) and over the spectral range 0.4 microns to 30 cm. We use these templates and the SINGS data to construct average templates from 5 microns to 30 cm for infrared galaxies with L(TIR) = 5 x 10^9 to 10^13 L_sun. All of these templates are made available on line.
Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1 .4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z~1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا