ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - F.R. Ferraro 2015
We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Directors Discretionary Time shortly after (approximately 1 month) the Swift detec tion of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.
70 - Barbara Lanzoni 2013
Terzan 5 is a stellar system in the Galactic bulge commonly catalogued as a globular cluster. Through dedicated NIR photometry and spectroscopy we have discovered that it harbors two main stellar populations defining two distinct red clumps (RCs) in the colour-magnitude diagram, and displaying different iron content: [Fe/H] = -0.2 and [Fe/H]=+0.3 for the faint and the bright red clumps, respectively. In addition, a third minor population with significantly lower metallicity ([Fe/H]=-0.79) has been recently detected, thus enlarging the metallicity range covered by Terzan 5 to Delta[Fe/H] ~ 1 dex. This evidence demonstrates that, similarly to omega Centauri in the Galactic halo, Terzan 5 is not a genuine globular cluster, but a stellar system that experienced a much more complex star formation and chemical enrichment history. Moreover the striking chemical similarity with the bulge stars suggests that Terzan 5 could be the relic of one of the massive clumps that contributed through strong dynamical interactions with other similar sub-structures) to the formation of the Galactic bulge.
62 - B. Lanzoni 2010
Terzan 5 is a globular cluster-like stellar system in the Galactic Bulge which has been recently found to harbor two stellar populations with different iron content and probably different ages (Ferraro et al. 2009). This discovery suggests that Terza n 5 may be the relic of a primordial building block which contributed to the formation of the Galactic Bulge. Here we present a re-determination of the structural parameters (center of gravity, density and surface brightness profiles, total luminosity and mass) of Terzan 5, as obtained from the combination of high-resolution (ESO-MAD and HST ACS-WFC) and wide-field (ESO-WFI) observations. We find that Terzan 5 is significantly less concentrated and more massive than previously thought. Still it has the largest collision rate of any stellar aggregate in the Galaxy. We discuss the impact of these findings on the exceptional population of millisecond pulsars harbored in this stellar system.
79 - F. R. Ferraro 2009
Globular star clusters are compact and massive stellar systems old enough to have witnessed the entire history of our Galaxy, the Milky Way. Although recent results suggest that their formation may have been more complex than previously thought, they still are the best approximation to a stellar population formed over a relatively short time scale (less than 1 Gyr) and with virtually no dispersion in the iron content. Indeed, only one cluster-like system (omega Centauri) in the Galactic halo is known to have multiple stellar populations with a significant spread in iron abundance and age4,5. Similar findings in the Galactic bulge have been hampered by the obscuration arising from thick and varying layers of interstellar dust. Here we report that Terzan 5, a globular-cluster-like system in the Galactic bulge, has two stellar populations with different iron content and ages. Terzan 5 could be the surviving remnant of one of the primordial building blocks that are thought to merge and form galaxy bulges.
157 - E. Dalessandro 2008
We have used a combination of ACS-HST high-resolution and wide-field SUBARU data in order to study the Blue Straggler Star (BSS) population over the entire extension of the remote Galactic globular cluster NGC 2419. The BSS population presented here is among the largest ever observed in any stellar system, with more than 230 BSS in the brightest portion of the sequence. The radial distribution of the selected BSS is essentially the same as that of the other cluster stars. In this sense the BSS radial distribution is similar to that of omega Centauri and unlike that of all Galactic globular clusters studied to date, which have highly centrally segregated distributions and, in most cases, a pronounced upturn in the external regions. As in the case of omega Centauri, this evidence indicates that NGC 2419 is not yet relaxed even in the central regions. This observational fact is in agreement with estimated half-mass relaxation time, which is of the order of the cluster age.
45 - B. Lanzoni 2007
By combining high-resolution HST and wide-field ground based observations, in ultraviolet and optical bands, we study the Blue Straggler Star (BSS) population of the low density galactic globular cluster M55 (NGC 6809) over its entire radial extent. The BSS projected radial distribution is found to be bimodal, with a central peak, a broad minimum at intermediate radii, and an upturn at large radii. Similar bimodal distributions have been found in other globular clusters (M3, 47 Tucanae, NGC 6752, M5), but the external upturn in M55 is the largest found to date. This might indicate a large fraction of primordial binaries in the outer regions of M55, which seems somehow in contrast with the relatively low (sim 10%) binary fraction recently measured in the core of this cluster.
138 - B. Lanzoni 2007
We have used a combination of high resolution (HST ACS-HRC, ACS-WFC, and WFPC2) and wide-field (ESO-WFI) observations of the galactic globular cluster NGC 6388 to derive its center of gravity, projected density profile, and central surface brightness profile. While the overall projected profiles are well fit by a King model with intermediate concentration (c=1.8) and sizable core radius (rc=7), a significant power law (with slope alpha=-0.2) deviation from a flat core behavior has been detected within the inner 1 arcsecond. These properties suggest the presence of a central intermediate mass black hole. The observed profiles are well reproduced by a multi-mass isotropic, spherical model including a black hole with a mass of ~5.7x10^3 Msol.
73 - B. Lanzoni 2007
By combining high-resolution (HST-WFPC2) and wide-field ground based (2.2m ESO-WFI) and space (GALEX) observations, we have collected a multi-wavelength photometric data base (ranging from the far UV to the near infrared) of the galactic globular clu ster NGC1904 (M79). The sample covers the entire cluster extension, from the very central regions up to the tidal radius. In the present paper such a data set is used to study the BSS population and its radial distribution. A total number of 39 bright ($m_{218}le 19.5$) BSS has been detected, and they have been found to be highly segregated in the cluster core. No significant upturn in the BSS frequency has been observed in the outskirts of NGC 1904, in contrast to other clusters (M 3, 47 Tuc, NGC 6752, M 5) studied with the same technique. Such evidences, coupled with the large radius of avoidance estimated for NGC 1904 ($r_{avoid}sim 30$ core radii), indicate that the vast majority of the cluster heavy stars (binaries) has already sunk to the core. Accordingly, extensive dynamical simulations suggest that BSS formed by mass transfer activity in primordial binaries evolving in isolation in the cluster outskirts represent only a negligible (0--10%) fraction of the overall population.
By combining high-resolution HST and wide-field ground based observations, in ultraviolet and optical bands, we study the Blue Stragglers Star (BSS) population of the galactic globular cluster M5 (NGC 5904) from its very central regions up to its per iphery. The BSS distribution is highly peaked in the cluster center, decreases at intermediate radii and rises again outward. Such a bimodal distribution is similar to those previously observed in other globular clusters (M3, 47Tucanae, NGC6752). As for these clusters, dynamical simulations suggest that, while the majority of BSS in M5 could be originated by stellar collisions, a significant fraction (20-40%) of BSS generated by mass transfer processes in primordial binaries is required to reproduce the observed radial distribution. A candidate BSS has been detected beyond the cluster tidal radius. If confirmed, this could represent an interesting case of an evaporating BSS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا