ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper discusses the challenges presented by tall data problems associated with Bayesian classification (specifically binary classification) and the existing methods to handle them. Current methods include parallelizing the likelihood, subsamplin g, and consensus Monte Carlo. A new method based on the two-stage Metropolis-Hastings algorithm is also proposed. The purpose of this algorithm is to reduce the exact likelihood computational cost in the tall data situation. In the first stage, a new proposal is tested by the approximate likelihood based model. The full likelihood based posterior computation will be conducted only if the proposal passes the first stage screening. Furthermore, this method can be adopted into the consensus Monte Carlo framework. The two-stage method is applied to logistic regression, hierarchical logistic regression, and Bayesian multivariate adaptive regression splines.
We consider the problem of estimating high-dimensional covariance matrices of a particular structure, which is a summation of low rank and sparse matrices. This covariance structure has a wide range of applications including factor analysis and rando m effects models. We propose a Bayesian method of estimating the covariance matrices by representing the covariance model in the form of a factor model with unknown number of latent factors. We introduce binary indicators for factor selection and rank estimation for the low rank component combined with a Bayesian lasso method for the sparse component estimation. Simulation studies show that our method can recover the rank as well as the sparsity of the two components respectively. We further extend our method to a graphical factor model where the graphical model of the residuals as well as selecting the number of factors is of interest. We employ a hyper-inverse Wishart prior for modeling decomposable graphs of the residuals, and a Bayesian graphical lasso selection method for unrestricted graphs. We show through simulations that the extended models can recover both the number of latent factors and the graphical model of the residuals successfully when the sample size is sufficient relative to the dimension.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا