ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - A. Moor , A. Kospal , P. Abraham 2014
A significant fraction of main-sequence stars are encircled by dusty debris discs, where the short-lived dust particles are replenished through collisions between planetesimals. Most destructive collisions occur when the orbits of smaller bodies are dynamically stirred up, either by the gravitational effect of locally formed Pluto-sized planetesimals (self-stirring scenario), or via secular perturbation caused by an inner giant planet (planetary stirring). The relative importance of these scenarios in debris systems is unknown. Here we present new Herschel Space Observatory imagery of 11 discs selected from the most massive and extended known debris systems. All discs were found to be extended at far-infrared wavelengths, five of them being resolved for the first time. We evaluated the feasibility of the self-stirring scenario by comparing the measured disc sizes with the predictions of the model calculated for the ages of our targets. We concluded that the self-stirring explanation works for seven discs. However, in four cases, the predicted pace of outward propagation of the stirring front, assuming reasonable initial disc masses, was far too low to explain the radial extent of the cold dust. Therefore, for HD 9672, HD 16743, HD 21997, and HD 95086, another explanation is needed. We performed a similar analysis for {ss} Pic and HR 8799, reaching the same conclusion. We argue that planetary stirring is a promising possibility to explain the disk properties in these systems. In HR 8799 and HD 95086 we may already know the potential perturber, since their known outer giant planets could be responsible for the stirring process. Our study demonstrates that among the largest and most massive debris discs self-stirring may not be the only active scenario, and potentially planetary stirring is responsible for destructive collisions and debris dust production in a number of systems.
70 - A. Moor , P. Abraham , A. Kospal 2013
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD95086. The strong infrared excess of the system indicates that, similarly to HR8799, {ss} Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of ~6.0x5.4 arcsec (540x490 AU) and disk inclination of ~25 degree. Assuming the same inclination for the planet candidates orbit, its re-projected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modelling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks co-exist.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا