ترغب بنشر مسار تعليمي؟ اضغط هنا

The parity modulation of the ground state of a superconducting island is a direct consequence of the presence of the Cooper pair condensate preferring an even number of charge carriers. The addition energy of an odd, unpaired quasiparticle equals to the superconducting gap, $Delta$, suppressing single electron hopping in the low temperature limit. Controlling the quasiparticle occupation is of fundamental importance for superconducting qubits as single electron tunneling results in decoherence. In particular, topological quantum computation relies on the parity control and readout of Majorana bound states. Here we present parity modulation for the first time of a niobium titanite nitride (NbTiN) Cooper-pair transistor coupled to aluminium (Al) leads. We show that this circuit is compatible with the magnetic field requirement in the range of 100 mT of inducing topological superconductivity in spin-orbit coupled nanowires. Our observed parity lifetime exceeding 1 minute is several orders of magnitude higher than the required gate time of flux-controlled braiding of Majorana states. Our findings readily demonstrate that a NbTiN island can be parity-controlled and therefore provides a good platform for superconducting coherent circuits operating in a magnetic field.
Solid state ionic conductors are good candidates for the next generation of nonvolatile computer memory elements. Such devices have to show reproducible resistance switching at reasonable voltage and current values even if scaled down to the nanomete r sizes. Here we study the switching characteristics of nanoscale junctions created between a tungsten tip and a silver film covered by a thin ionic conductor layer. Atomic-sized junctions show spectacular current induced switching characteristics, but both the magnitude of the switching voltage and the direction of the switching vary randomly for different junctions. In contrast, for somewhat larger junctions with diameters of a few nanometers a well defined, reproducible switching behavior is observed which is associated with the formation and destruction of nanoscale channels in the ionic conductor surface layer. Our results define a low size limit of 3 nm for reliable ionic nano-switches, which is well below the resolution of recent lithographic techniques.
The transport through a metal-superconductor interface is governed by a special charge conversion process, the Andreev reflection, where each incident electron drags another electron with itself to form a Cooper pair. At the normal side a hole is lef t behind dressed by superconducting correlations. For a low transparency interface the simultaneous transfer of two charges is strongly suppressed leading to a reduced conductance. Here we demonstrate that this reduced conductance can be turned to an infinite one by tuning the nanoscale geometry. Creating variable size nanojunctions between a thin metallic film and a superconducting tip we study how multiple phase-coherent scatterings enhance the superconducting correlations at the normal side. By increasing the coherent volume of carriers initially the transmission through the interface is continuously enhanced. However, as the phase-coherent volume reaches the opposite surface of the thin film a resonator is formed, and a robust transition is induced due to Cooper pair condensation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا