ترغب بنشر مسار تعليمي؟ اضغط هنا

27 - Aristotle Socrates 2013
Close-in extrasolar gas giants -- the hot Jupiters -- display departures in radius above the zero-temperature solution, the radius excess, that are anomalously high. The radius excess of hot Jupiters follows a relatively close relation with thermal t idal tidal torques and holds for ~ 4-5 orders of magnitude in a characteristic thermal tidal power in such a way that is consistent with basic theoretical expectations. The relation suggests that thermal tidal torques determine the global thermodynamic and spin state of the hot Jupiters. On empirical grounds, it is shown that theories of hot Jupiter inflation that invoke a constant fraction of the stellar flux to be deposited at great depth are, essentially, falsified.
A significant fraction of the hot Jupiters with final circularized orbital periods of less than 5 days are thought to form through the channel of high-eccentricity migration. Tidal dissipation at successive periastron passages removes orbital energy of the planet, which has the potential for changes in semi-major axis of a factor of ten to a thousand. In the equilibrium tide approximation we show that, in order for high-eccentricity migration to take place, the relative level of tidal dissipation in Jupiter analogues must be at least 10 times higher than the upper-limit attributed to the Jupiter-Io interaction. While this is not a severe problem for high-e migration, it contradicts the results of several previous calculations. We show that these calculations of high-e migration inadvertently over-estimated the strength of tidal dissipation by three to four orders of magnitude. These discrepancies were obscured by the use of various parameters, such as lag time tau, tidal quality factor Q and viscous time t_V. We provide the values of these parameters required for the Jupiter-Io interaction, tidal circularization and high-e migration. Implications for tidal theory as well as models of the inflated radii of hot Jupiters are discussed. Though the tidal Q is not, in general, well-defined, we derive a formula for it during high-eccentricity migration where Q is approximately constant throughout evolution.
We show that the constant time lag prescription for tidal dissipation follows directly from the equations of motion of a tidally-forced viscous fluid body, given some basic assumptions. They are (i) dissipation results from a viscous force that is pr oportional to the velocity of the tidal flow (ii) tidal forcing and dissipation are weak and non-resonant (iii) the equilibrium structure of the forced body is spherically-symmetric. The lag time is an intrinsic property of the tidally-forced body and is independent of the orbital configuration.
We combine the catalogue of eclipsing binaries from the All Sky Automated Survey (ASAS) with the ROSAT All Sky Survey (RASS). The combination results in 836 eclipsing binaries that display coronal activity and is the largest sample of active binary s tars assembled to date. By using the (V-I) colors of the ASAS eclipsing binary catalogue, we are able to determine the distances and thus bolometric luminosities for the majority of eclipsing binaries that display significant stellar activity. A typical value for the ratio of soft X-ray to bolometric luminosity is L_X/L_bol ~ a few x 10^-4, similar to the ratio of soft X-ray to bolometric flux F_X/F_bol in the most active regions of the Sun. Unlike rapidly rotating isolated late-type dwarfs -- stars with significant outer convection zones -- a tight correlation between Rossby number and activity of eclipsing binaries is absent. We find evidence for the saturation effect and marginal evidence for the so-called super-saturation phenomena. Our work shows that wide-field stellar variability searches can produce a high yield of binary stars with strong coronal activity. The combined ASAS and RASS catalogue, as well as the results of this work are available for download in a form of a file.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا