ترغب بنشر مسار تعليمي؟ اضغط هنا

We have monitored twelve T dwarfs with the Kitt Peak 2.1m telescope using an f814w filter (0.7-0.95 microns) to place in context the remarkable 10-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation wa s the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ~17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ~10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.
We present the observational results of an L and M band Adaptive Optics (AO) imaging survey of 54 nearby, sunlike stars for extrasolar planets, carried out using the Clio camera on the MMT. We have concentrated more strongly than all other planet ima ging surveys to date on very nearby F, G, and K stars, prioritizing stellar proximity higher than youth. Ours is also the first survey to include extensive observations in the M band, which supplement the primary L observations. Models predict much better planet/star flux ratios at the L and M bands than at more commonly used shorter wavelengths (i.e. the H band). We have carried out extensive blind simulations with fake planets inserted into the raw data to verify our sensitivity, and to establish a definitive relationship between source significance in $sigma$ and survey completeness. We find 97% confident-detection completeness for 10$sigma$ sources, but only 46% for 7$sigma$ sources -- raising concerns about the standard procedure of assuming high completeness at 5$sigma$, and demonstrating that blind sensitivity tests to establish the significance-completeness relation are an important analysis step for all planet-imaging surveys. We discovered a previously unknown, approximately 0.15 solar-mass stellar companion to the F9 star GJ 3876, at a projected separation of about 80 AU. Twelve additional candidate faint companions are detected around other stars. Of these, eleven are confirmed to be background stars, and one is a previously known brown dwarf. We obtained sensitivity to planetary-mass objects around almost all of our target stars, with sensitivity to objects below 3 Jupiter masses in the best cases. Constraints on planet populations based on this null result are presented in our Modeling Results paper.
We have carried out an L and M band Adaptive Optics (AO) extrasolar planet imaging survey of 54 nearby, sunlike stars using the Clio camera at the MMT. Our survey concentrates more strongly than all others to date on very nearby F, G, and K stars, in that we have prioritized proximity higher than youth. Our survey is also the first to include extensive observations in the M band, which supplemented the primary L observations. These longer wavelength bands are most useful for very nearby systems in which low temperature planets with red IR colors (i.e. H - L, H - M) could be detected. The survey detected no planets, but set interesting limits on planets and brown dwarfs in the star systems we investigated. We have interpreted our null result by means of extensive Monte Carlo simulations, and constrained the distributions of extrasolar planets in mass $M$ and semimajor axis $a$. If planets are distributed according to a power law with $dN propto M^{alpha} a^{beta} dM da$, normalized to be consistent with radial velocity statistics, we find that a distribution with $alpha = -1.1$ and $beta = -0.46$, truncated at 110 AU, is ruled out at the 90% confidence level. These particular values of $alpha$ and $beta$ are significant because they represent the most planet-rich case consistent with current statistics from radial velocity observations. With 90% confidence no more than 8.1% of stars like those in our survey have systems with three widely spaced, massive planets like the A-star HR 8799. Our observations show that giant planets in long-period orbits around sun-like stars are rare, confirming the results of shorter-wavelength surveys, and increasing the robustness of the conclusion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا