ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - L. A. Dal , A. R. Raklev 2015
Antideuterons are a potential messenger for dark matter annihilation or decay in our own galaxy, with very low backgrounds expected from astrophysical processes. The standard coalescence model of antideuteron formation, while simple to implement, is shown to be under considerable strain by recent data from the LHC. We suggest a new empirically based model, with only one free parameter, which is better able to cope with these data, and we explore the consequences of the model for dark matter searches.
The CMS experiment recently reported an excess consistent with an invariant mass edge in opposite-sign same flavor (OSSF) leptons, when produced in conjunction with at least two jets and missing transverse momentum. We provide an interpretation of th e edge in terms of (anti-)squark pair production followed by the `golden cascade decay for one of the squarks: $tilde q rightarrow tildechi_2^0 q to tilde l l q to tildechi_1^0 q l l$ in the minimal supersymmetric standard model (MSSM). A simplified model involving binos, winos, an on-shell slepton, and the first two generations of squarks fits the event rate and the invariant mass edge. We check consistency with a recent ATLAS search in a similar region, finding that much of the good-fit parameter space is still allowed at the 95% confidence level (CL). However, a combination of other LHC searches, notably two-lepton stop pair searches and jets plus $p_T^{rm miss}$, rule out all of the remaining parameter space at the 95% CL.
76 - A.R. Raklev , M.J. White 2009
Recently, a claim of possible evidence for Dark Matter in data from the Fermi LAT experiment was made by Goodenough and Hooper [8]. We test the Dark Matter properties consistent with their claim in terms of the MSSM by a 24-dimensional parameter scan using nested sampling, excluding all but a very small region of the MSSM. Although this claim is very preliminary, and not made by the Fermi LAT experiment, our scan shows a possible approach for the analysis of future firm evidence from an indirect detection experiment, and its potential for heavily constraining models.
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks i n models with baryonic violation of R-parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets.
We study gravitino dark matter and slow gravitino decays within the framework of R-violating supersymmetry, with particular emphasis on the flavour dependence of the branching ratios and the allowed R-violating couplings. The dominant decay modes and final state products turn out to be very sensitive to the R-violating hierarchies. Mixing effects can be crucial in correctly deriving the relative magnitude of the various contributions, particularly for heavy flavours with phase space suppression. The study of the strength of different decay rates for the gravitino is also correlated to collider signatures expected from decays of the Next-to-Lightest Supersymmetric Particle (NLSP) and to single superparticle production.
59 - Are R. Raklev 2007
We present our work on reconstructing sparticle masses in purely hadronic decay chains, using the $k_T$ jet-algorithm on Monte Carlo simulated events at LHC energies.
114 - S. Lola 2007
We study radiative gravitino decay within the framework of R-violating supersymmetry. For trilinear R-violating couplings that involve the third generation of fermions, or for light gravitinos, we find that the radiative loop-decay $tilde{G} to gamma u$ dominates over the tree-level ones for a wide set of parameters. We calculate the gravitino decay width and study its implications for cosmology and collider physics. Slow-decaying gravitinos are good dark matter candidates, for a range of parameters that would also predict observable R-violating signatures in colliders. In general the branching ratios are very dependent on the relative hierarchies of R-violating operators, and may provide relevant information on the flavour structure of the underlying fundamental theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا