ترغب بنشر مسار تعليمي؟ اضغط هنا

Cadmium Zinc Telluride and Cadmium Telluride are the detector materials of choice for the detection of X-rays in the X-ray energy band E >= 5keV with excellent spatial and spectral resolution and without cryogenic cooling. Owing to recent breakthroug hs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolution between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of X-ray telescopes will require pixelated X-ray detectors with pixels on a grid with a lattice constant of <= 250um. Additional detector requirements include a low energy threshold of less than 5keV and an energy resolution of less than one keV. The science drivers for a high angular-resolution X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, active galactic nuclei feedback, and the behaviour of matter at very high densities. In this contribution, we report on our R&D studies with the goal to optimise small-pixel Cadmium Zinc Telluride and Cadmium Telluride detectors.
Globular clusters are source of gamma-ray radiation. At GeV energies, their emission is attributed to magnetospheric activity of millisecond pulsars residing in the clusters. Inverse Compton scattering of ambient photon fields on relativistic particl es diffusing through cluster environment is thought to be the source of GeV-TeV emission of globular clusters. Using pair starved polar cap model gamma-ray emission from synthetic millisecond pulsar was modelled. In addition to pulsar emission characteristics, the synthetic pulsar model yielded spectra of electrons escaping pulsar magnetosphere. To simulate gamma-ray emission of globular cluster, both products of synthetic millisecond pulsar modelling were used. Gamma-ray spectra of synthetic millisecond pulsars residing in the cluster were summed to produce the magnetospheric component of cluster emission. Electrons ejected by these pulsars were injected into synthetic globular cluster environment. Their diffusion and interaction, both, with cluster magnetic field and ambient photon fields, were performed with Bednarek & Sitarek (2007) model yielding ICS component of cluster emission. The sum of the magnetospheric and ICS components gives the synthetic gamma-ray spectrum of globular cluster. The synthetic cluster spectrum stretches from GeV to TeV energies. Detailed modelling was preformed for two globular clusters: Ter 5 and 47 Tuc. Simulations are able to reproduce (within errors) the shape and the flux level of the GeV part of the spectrum observed for both clusters with the Fermi/LAT instrument. The synthetic flux level obtained in the TeV part of the clusters spectrum is in agreement with a H.E.S.S. upper limit determined for 47 Tuc, and with emission level recently detected for Ter 5 with H.E.S.S. telescope. The synthetic globular cluster model, however, is not able to reproduce the exact shape of the TeV spectrum observed for Ter 5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا