ترغب بنشر مسار تعليمي؟ اضغط هنا

We study critical Casimir forces (CCF) $f_{mathrm C}$ for films of thickness $L$ which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSF) on both surfaces. We consider the case th at, in the absence of RSF, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak disorder CCF still exhibit scaling, acquiring a random field scaling variable $w$ which is zero for pure systems. We confirm these analytic predictions by MC simulations. Moreover, our MC data show that $f_{mathrm C}$ varies as $f_{mathrm C}(wto 0)-f_{mathrm C}(w=0)sim w^2$. Asymptotically, for large $L$, $w$ scales as $w sim L^{-0.26} to 0$ indicating that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin films such that $w simeq 1$, we find that the presence of RSF with vanishing mean value increases significantly the strength of CCF, as compared to systems without them, and shifts the extremum of the scaling function of $f_{mathrm C}$ towards lower temperatures. But $f_{mathrm C}$ remains attractive.
We present a system exhibiting giant proximity effects which parallel observations in superfluid helium (Perron et al, Nature Physics V. 6, 499 (2010)) and give a theoretical explanation of these phenomena based on the mesoscopic picture of phase coe xistence in finite systems. Our theory is confirmed by MC simulation studies. Our work demonstrates that such action-at-a-distance can occur in classical systems involving simple or complex fluids, such as colloid-polymer mixtures, or ferromagnets.
200 - O. Vasilyev , A. Maciolek , 2011
Monte Carlo simulations based on an integration scheme for free energy differences is used to compute critical Casimir forces for three-dimensional Ising films with various boundary fields. We study the scaling behavior of the critical Casimir force, including the scaling variable related to the boundary fields. Finite size corrections to scaling are taken into account. We pay special attention to that range of surface field strengths within which the force changes from repulsive to attractive upon increasing the temperature. Our data are compared with other results available in the literature.
Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experimentally relevant Ising and XY univ ersality classes. Several surface universality classes of the confining surfaces are considered, some of which are relevant for recent experiments. A novel approach introduced previously EPL 80, 60009 (2007), based inter alia on an integration scheme of free energy differences, is utilized to compute the universal scaling functions of the critical Casimir forces in the critical range of temperatures above and below the bulk critical temperature. The resulting predictions are compared with corresponding experimental data for wetting films of fluids and with available theoretical results.
122 - A. Maciolek , A. Gambassi , 2007
Recent experimental data for the complete wetting behavior of pure 4He and of 3He-4He mixtures exposed to solid substrates show that there is a change of the corresponding film thicknesses L upon approaching thermodynamically the lambda-transition an d the tricritical end point, respectively, which can be attributed to critical Casimir forces f_C. We calculate the scaling functions vartheta of f_C within models representing the corresponding universality classes. For the mixtures our analysis provides an understanding of the rich behavior of vartheta deduced from the experimental data and predicts the crossover behavior between the tricritical point and the lambda-transition of pure 4He which are connected by a line of critical points. The formation of a soft-mode phase within the wetting films gives rise to a pronounced maximum of f_C below the tricritical point as observed experimentally. Near the tricritical point we find logarithmic corrections ~L^(-3)(ln L)^(1/2) for the leading behavior of vartheta dominating the contributions from the background dispersion forces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا