ترغب بنشر مسار تعليمي؟ اضغط هنا

348 - Anna Barnacka 2018
The inner regions of active galaxies host the most extreme and energetic phenomena in the universe including, relativistic jets, supermassive black hole binaries, and recoiling supermassive black holes. However, many of these sources cannot be resolv ed with direct observations. I review how strong gravitational lensing can be used to elucidate the structures of these sources from radio frequencies up to very high energy gamma rays. The deep gravitational potentials surrounding galaxies act as natural gravitational lenses. These gravitational lenses split background sources into multiple images, each with a gravitationally-induced time delay. These time delays and positions of lensed images depend on the source location, and thus, can be used to infer the spatial origins of the emission. For example, using gravitationally-induced time delays improves angular resolution of modern gamma-ray instruments by six orders of magnitude, and provides evidence that gamma-ray outbursts can be produced at even thousands of light years from a supermassive black hole, and that the compact radio emission does not always trace the position of the supermassive black hole. These findings provide unique physical information about the central structure of active galaxies, force us to revise our models of operating particle acceleration mechanisms, and challenge our assumptions about the origin of compact radio emission. Future surveys, including LSST, SKA, and Euclid, will provide observations for hundreds of thousands of gravitationally lensed sources, which will allow us to apply strong gravitational lensing to study the multi-wavelength structure for large ensembles of sources. This large ensemble of gravitationally lensed active galaxies will allow us to elucidate the physical origins of multi-wavelength emissions, their connections to supermassive black holes, and their cosmic evolution.
82 - Anna Barnacka 2017
Recent observations show a population of active galaxies with milliarcseconds offsets between optical and radio emission. Such offsets can be an indication of extreme phenomena associated with supermassive black holes including relativistic jets, bin ary supermassive black holes, or even recoiling supermassive black holes. However, the multi-wavelength structure of active galaxies at a few milliarcseconds cannot be fathomed with direct observations. We propose using strong gravitational lensing to elucidate the multi-wavelength structure of sources. When sources are located close to the caustic of lensing galaxy, even small offset in the position of the sources results in a drastic difference in the position and magnification of mirage images. We show that the angular offset in the position of the sources can be amplified more than 50 times in the observed position of mirage images. We find that at least 8% of the observed gravitationally lensed quasars will be in the caustic configuration. The synergy between SKA and Euclid will provide an ideal set of observations for thousands of gravitationally lensed sources in the caustic configuration, which will allow us to elucidate the multi-wavelength structure for a large ensemble of sources, and study the physical origin of radio emissions, their connection to supermassive black holes, and their cosmic evolution.
Strong gravitational lensing is a powerful tool for resolving the high energy universe. We combine the temporal resolution of Fermi-LAT, the angular resolution of radio telescopes, and the independently and precisely known Hubble constant from Planck , to resolve the spatial origin of gamma-ray flares in the strongly lensed source B2 0218+35. The lensing model achieves 1 milliarcsecond spatial resolution of the source at gamma-ray energies. The data imply that the gamma-ray flaring sites are separate from the radio core: the bright gamma-ray flare (MJD: 56160 - 56280) occurred $51pm8$ pc from the 15 GHz radio core, toward the central engine. This displacement is significant at the $sim3sigma$ level, and is limited primarily by the precision of the Hubble constant. B2 0218+35 is the first source where the position of the gamma-ray emitting region relative to the radio core can be resolved. We discuss the potential of an ensemble of strongly lensed high energy sources for elucidating the physics of distant variable sources based on data from Chandra and SKA.
60 - Anna Barnacka 2015
Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distance sources and produce time delays between mirage images. Gravitationally-induce d time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT satellite continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally-lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the Autocorrelation Function, the Double Power Spectrum, and the Maximum Peak Method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally-lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10000. We analyze four active periods. For two of these periods, the emission is consistent with origination from the core and for the other two, the data suggest that the emission region is displaced from the core by more that ~1.5 kpc. For the core emission, the gamma-ray time delays, $23pm0.5$ days and $19.7pm1.2$ days, are consistent with the radio time delay $26^{+4}_{-5}$ days.
Gamma-ray bursts (GRBs) show a bimodal distribution of durations, separated at a duration of ~2 s. Observations have confirmed the association of long GRBs with the collapse of massive stars. The origin of short GRBs is still being explored. We exami ne constraints on the emission region size in short and long GRBs detected by Fermi/GBM. We find that the emission region size during the prompt emission, R, and the burst duration, T$_{90}$, are consistent with the relation R ~ c x T$_{90}$, for both long and short GRBs. We find the characteristic size for the prompt emission region to be ~2 x 10$^{10}$ cm, and ~4 x 10$^{11}$ cm for short and long GRBs, respectively.
In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly-lensed sources. It is a puzzle, then, that the values of H0 obtained with this method span a range from 50 - 100 k m/s/Mpc. Quasars monitored to measure these time delays, are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of sources as the underlying physical explanation of the widespread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate that the derived value of the Hubble constant is very sensitive to the offset between the center of the emission and the center of the variable emitting region. Thus, we propose using the value of H0 known from other techniques to spatially resolve the origin of the variable emission once the time delay is measured. We advocate this method particularly for gamma-ray astronomy, where the angular resolution of detectors reaches approximately 0.1 degree; lensed blazars offer the only route for identify the origin of gamma-ray flares. Large future samples of gravitationally lensed sources identified with Euclid, SKA, and LSST will enable a statistical determination of H0.
149 - Anna Barnacka 2014
We investigate potential $gamma-gamma$ absorption of gamma-ray emission from blazars arising from inhomogeneities along the line of sight, beyond the diffuse Extragalactic Background Light (EBL). As plausible sources of excess $gamma-gamma$ opacity, we consider (1) foreground galaxies, including cases in which this configuration leads to strong gravitational lensing, (2) individual stars within these foreground galaxies, and (3) individual stars within our own galaxy, which may act as lenses for microlensing events. We found that intervening galaxies close to the line-of-sight are unlikely to lead to significant excess $gamma-gamma$ absorption. This opens up the prospect of detecting lensed gamma-ray blazars at energies above 10 GeV with their gamma-ray spectra effectively only affected by the EBL. The most luminous stars located either in intervening galaxy or in our galaxy provides an environment in which these gamma-rays could, in principle, be significantly absorbed. However, despite a large microlensing probability due to stars located in intervening galaxies, gamma-rays avoid absorption by being deflected by the gravitational potentials of such intervening stars to projected distances (impact parameters) where the resulting $gamma-gamma$ opacities are negligible. Thus, neither of the intervening excess photon fields considered here, provide a substantial source of excess $gamma-gamma$ opacity beyond the EBL, even in the case of very close alignments between the background blazar and a foreground star or galaxy.
The components of blazar jets that emit radiation span a factor of $10^{10}$ in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources and the observed light curve is thus the sum of the images. Durations of $gamma$-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
147 - Anna Barnacka 2013
This thesis presents the study of four aspects of high energy astronomy. The first part of the thesis is dedicated to an aspect of instrument development for imaging atmospheric Cherenkov telescopes, namely the Level 2 trigger system of the High Ener gy Stereoscopic System (H.E.S.S.). I am providing the motivation and principle of the operation of the Level 2 trigger, I am describing hardware implementation of the system and then I am evaluating expected performances. The second part of my thesis deals with the data analysis and modeling of broad-band emission of particular blazar PKS 1510-089. I am presenting the analysis of the H.E.S.S. data, together with the FERMI data and a collection of multi-wavelength data obtained with various instruments. I am presenting the model of PKS 1510-089 observations carried out during a flare recorded by H.E.S.S.. The third part of my thesis deals with blazars observed by the FERMI-LAT, but from the point of view of other phenomena: a strong gravitational lensing. This part of my thesis shows the first evidence for gravitational lensing phenomena in high energy gamma-rays. This evidence comes from the observation of a gravitational lens system induced echo in the light curve of the distant blazar PKS 1830-211. The last part concentrates on another lensing phenomena called femtolensing. The search for femtolensing effects has been used to derive limits on the primordial black holes abundance. I have used gamma-ray bursts with known redshifts detected by the FERMI Gamma-ray Burst Monitor (GBM) to search for the femtolensing effects caused by compact objects.
The Cherenkov Telescope Array (CTA) is the next generation observatory for very high energy gamma rays. The capability of the array to detect gamma-rays above 10 TeV is going to be achieved with a large number of Small Size Telescopes (SSTs) which wi ll cover a large area. The subarray composed of SSTs has to compromise the number of telescopes (cost) and the large effective area. The separation between the telescopes has to be adjusted to achieve highest sensitivity with the smallest number of telescopes. On the other hand larger separation can worsen the energy threshold as well as the energy and angular resolutions. In our study we have investigated the optimal spacing between the telescopes of the SST array using an analytical approach and the concept of telescope cell consisting of four telescopes as well as Monte Carlo simulations of the sets of cells.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا