ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate a novel type of solar cell, one that uses fixed negative charges, formed at the interface of n-Si with Al2O3, to generate strong inversion at the Si surface by electrostatic repulsion. Built-in voltages of up to 755 mV are found at thi s interface. To be able to harness this large built-in voltage, we demonstrate a new photovoltaic device concept, where the photocurrent, generated in this inversion layer, is extracted via an inversion layer induced by a high work function PEDOT:PSS top contact, deposited on top of a passivating and dipole-inducing molecular monolayer. Results of the effect of the molecular monolayer on device performance yield open-circuit voltages of up to 550 mV for moderately doped Si, demonstrating the effectiveness of this contact structure in removing the Fermi level pinning that has hindered past efforts in developing this type of solar cell with n-type Si.
Recent evidence for a charge-Kondo effect in superconducting samples of Pb$_{1-x}$Tl$_x$Te [1] has brought renewed attention to the possibility of negative U superconductivity in this material, associated with valence fluctuations on the Tl impurity sites [2]. Here, we use indium as an electron-donor to counterdope Pb$_{.99}$Tl$_{.01}$Te and study the effect of the changing chemical potential on the Kondo-like physics and on the superconducting critical temperature, $T_c$. We find that, as the chemical potential moves away from the value where superconductivity, Kondo-like physics, and chemical potential pinning are expected, both $T_c$ and the low-temperature resistance anomaly are suppressed. This provides further evidence that both the superconductivity and the Kondo-like behavior are induced by the same source, as anticipated in the negative U model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا