ترغب بنشر مسار تعليمي؟ اضغط هنا

We present both the technical overview and main science drivers of the fourth phase of the Optical Gravitational Lensing Experiment (hereafter OGLE-IV). OGLE-IV is currently one of the largest sky variability surveys worldwide, targeting the densest stellar regions of the sky. The survey covers over 3000 square degrees in the sky and monitors regularly over a billion sources. The main targets include the inner Galactic Bulge and the Magellanic System. Their photometry spans the range of $12<I<21$ mag and $13<I<21.7$ mag, respectively. Supplementary shallower Galaxy Variability Survey covers the extended Galactic bulge and 2/3 of the whole Galactic disk within the magnitude range of $10<I<19$ mag. All OGLE-IV surveys provide photometry with milli-magnitude accuracy at the bright end. The cadence of observations varies from 19-60 minutes in the inner Galactic bulge to 1-3 days in the remaining Galactic bulge fields, Magellanic System and the Galactic disk. OGLE-IV provides the astronomical community with a number of real time services. The Early Warning System (EWS) contains information on two thousand gravitational microlensing events being discovered in real time annually, the OGLE Transient Detection System (OTDS) delivers over 200 supernovae a year. We also provide the real time photometry of unpredictable variables such as optical counterparts to the X-ray sources and R CrB stars. Hundreds of thousands new variable stars have already been discovered and classified by the OGLE survey. The number of new detections will be at least doubled during the current OGLE-IV phase. The survey was designed and optimized primarily to conduct the second generation microlensing survey for exoplanets. It has already contributed significantly to the increase of the discovery rate of microlensing exoplanets and free-floating planets.
We present a sample of 209 variable objects - very likely optical counterparts to the X-ray sources detected in the direction of the Galactic center by the Galactic Bulge Survey (GBS) carried out with the Chandra satellite. The variable sources were found in the databases of the OGLE long term survey monitoring regularly the Galactic bulge since 1992. The counterpart candidates were searched based on the X-ray source position in the radius of 3.9. Optical light curves of the candidates comprise a full variety of variability types: spotted stars, pulsating red giants (potentially secondary stars of symbiotic variables), cataclysmic variables, eclipsing binary systems, irregular non-periodic objects including an AGN (GRS 1734-292). Additionally, we find that positions of 19 non-variable stars brighter than 16.5 mag in the OGLE databases are so well aligned with the X-ray positions (<0.75) that these objects are also likely optical counterparts to the GBS X-ray sources. We provide the OGLE astrometric and photometric information for all selected objects and their preliminary classifications. Photometry of the candidates is available from the OGLE Internet archive, http://ogle.astrouw.edu.pl
103 - A. Udalski 2008
We describe two new OGLE-III real time data analysis systems: XROM and RCOM. The XROM system has been designed to provide continuous real time photometric monitoring of the optical counterparts of X-ray sources while RCOM system provides real time ph otometry of R Coronae Borealis variable stars located in the OGLE-III fields. Both systems can be used for triggering follow-up observations in crucial phases of variability episodes of monitored objects.
We present the OGLE-III Photometric Maps of the Large Magellanic Cloud. They cover about 40 square degrees of the LMC and contain mean, calibrated VI photometry and astrometry of about 35 million stars observed during seven observing seasons of the t hird phase of the Optical Gravitational Lensing Experiment - OGLE-III. We discuss the quality of data and present color-magnitude diagrams of selected fields. The OGLE-III Photometric Maps of the LMC are available to the astronomical community from the OGLE Internet archive.
We describe methods applied to the final photometric reductions and calibrations to the standard system of the images collected during the third phase of the Optical Gravitational Lensing Experiment survey - OGLE-III. Astrometric reduction methods ar e also presented. The OGLE-III data constitute a unique data set covering the Magellanic Clouds, Galactic bulge and Galactic disk fields monitored regularly every clear night since 2001 and being significant extension and continuation of the earlier OGLE observations. With the earlier OGLE-II and OGLE-I photometry some of the observed fields have now 16-year long photometric coverage.
118 - A. Udalski , F. Pont , D. Naef 2007
We present results of the photometric campaign for planetary and low-luminosity object transits conducted by the OGLE survey in 2005 season (Campaign #5). About twenty most promising candidates discovered in these data were subsequently verified spec troscopically with the VLT/FLAMES spectrograph. One of the candidates, OGLE-TR-211, reveals clear changes of radial velocity with small amplitude of 82 m/sec, varying in phase with photometric transit ephemeris. Thus, we confirm the planetary nature of the OGLE-TR-211 system. Follow-up precise photometry of OGLE-TR-211 with VLT/FORS together with radial velocity spectroscopy supplemented with high resolution, high S/N VLT/UVES spectra allowed us to derive parameters of the planet and host star. OGLE-TR-211b is a hot Jupiter orbiting a F7-8 spectral type dwarf star with the period of 3.68 days. The mass of the planet is equal to 1.03+/-0.20 M_Jup while its radius 1.36+0.18-0.09 R_Jup. The radius is about 20% larger than the typical radius of hot Jupiters of similar mass. OGLE-TR-211b is, then, another example of inflated hot Jupiters - a small group of seven exoplanets with large radii and unusually small densities - objects being a challenge to the current models of exoplanets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا