ترغب بنشر مسار تعليمي؟ اضغط هنا

The excess adsorption $Gamma $ in two-dimensional Ising strips $(infty times L)$ subject to identical boundary fields, at both one-dimensional surfaces decaying in the orthogonal direction $j$ as $-h_1j^{-p}$, is studied for various values of $p$ and along various thermodynamic paths below the critical point by means of the density-matrix renormalization-group method. The crossover behavior between the complete wetting and critical adsorption regimes, occurring in semi-infinite systems, are strongly influenced by confinement effects. Along isotherms $T=const$ the asymptotic power law dependences on the external bulk field, which characterize these two regimes, are undercut by capillary condensation. Along the pseudo first-order phase coexistence line of the strips, which varies with temperature, we find a broad crossover regime where both the thickness of the wetting film and $Gamma$ increase as function of the reduced temperature $tau$ but do not follow any power law. Above the wetting temperature the order parameter profiles are not slab-like but exhibit wide interfacial variations and pronounced tails. Inter alia, our explicit calculations demonstrate that, contrary to opposite claims by Kroll and Lipowsky [Phys. Rev. B {bf 28}, 5273 (1983)], for $p=2$ critical wetting transitions do exist and we determine the corresponding wetting phase diagram in the $(h_1,T)$ plane.
The competition between reptation and Rouse Dynamics is incorporated in the Rubinstein-Duke model for polymer motion by extending it with sideways motions, which cross barriers and create or annihilate hernias. Using the Density-Matrix Renormalizatio n-Group Method as solver of the Master Equation, the renewal time and the diffusion coefficient are calculated as function of the length of the chain and the strength of the sideways motion. These new types of moves have a strong and delicate influence on the asymptotic behavior of long polymers. The effects are analyzed as function of the chain length in terms of effective exponents and crossover scaling functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا