ترغب بنشر مسار تعليمي؟ اضغط هنا

314 - A. Zech , J.-P. Amans , S. Blake 2013
The Cherenkov Telescope Array (CTA) will be the worlds first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers i n the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to allow for a wide field of view with a light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One objective of the GATE (Gamma-ray Telescope Elements) programme is to build one of the first Schwarzschild-Couder prototypes and to evaluate its performance. The construction of the SST-GATE prototype on the campus of the Paris Observatory in Meudon is under way. We report on the current status of the project and provide details of the opto-mechanical design of the prototype, the development of its control software, and simulations of its expected performance.
Very high-energy gamma-ray emission from PKS 0447-439 was detected with the H.E.S.S. Cherenkov telescope array in December 2009. This blazar is one of the brightest extragalactic objects in the Fermi Bright Source List and has a hard spectrum in the MeV to GeV range. In the TeV range, a photon index of 3.89 +- 0.37 (stat) +- 0.22 (sys) and a flux normalisation at 1 TeV, Phi(1 TeV) = (3.5 +- 1.1 (stat) +- 0.9 (sys)) x 10^{-13} cm^{-2} s^{-1} TeV^{-1}, were found. The detection with H.E.S.S. triggered observations in the X-ray band with the Swift and RXTE telescopes. Simultaneous UV and optical data from Swift UVOT and data from the optical telescopes ATOM and ROTSE are also available. The spectrum and light curve measured with H.E.S.S. are presented and compared to the multi-wavelength data at lower energies. A rapid flare is seen in the Swift XRT and RXTE data, together with a flux variation in the UV band, at a time scale of the order of one day. A firm upper limit of z < 0.59 on the redshift of PKS 0447-439 is derived from the combined Fermi-LAT and H.E.S.S. data, given the assumptions that there is no upturn in the intrinsic spectrum above the Fermi-LAT energy range and that absorption on the Extragalactic Background Light (EBL) is not weaker than the lower limit provided by current models. The spectral energy distribution is well described by a simple one-zone Synchrotron Self-Compton (SSC) scenario, if the redshift of the source is less than z <~ 0.4.
Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E>= 100 GeV) occurred, provide a detailed picture of the evolution of its emiss ion. The complete data set from this campaign is presented, including observations in VHE gamma-rays (H.E.S.S.), X-rays (RXTE, CHANDRA, SWIFT XRT), optical (SWIFT UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source. The X-ray and VHE gamma-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares. Spectral hardening is seen in the SWIFT XRT data. The nightly averaged high-energy spectra of the non-flaring nights can be reproduced by a stationary one-zone SSC model, with only small variations in the parameters. The spectral and flux evolution in the high-energy band during the night of the second VHE flare is modelled with multi-zone SSC models, which can provide relatively simple interpretations for the hour time-scale evolution of the high-energy emission, even for such a complex data set. For the first time in this type of source, a clear indication is found for a relation between high activity at high energies and a long-term increase in the low frequency fluxes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا