ترغب بنشر مسار تعليمي؟ اضغط هنا

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophys ics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
We calculate the form factors for the semileptonic decays $B_sto Kell u$ and $Bto Kellell$ with lattice QCD. We work at several lattice spacings and a range of light quark masses, using the MILC 2+1-flavor asqtad ensembles. We use the Fermilab method for the $b$ quark. We obtain chiral-continuum extrapolations for $E_K$ up to $sim1.2$ GeV and then extend to the entire kinematic range with the model-independent $z$ expansion.
Part-3 of Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts. The proposed Project X proton accelerator at Fermilab, with multi-MW beam power and highly versatile beam formatting, will be a unique world-class facility to explore particle physics at the intensity frontier. Concurrently, however, it can also facilitate important scientific research beyond traditional particle physics and provide unprecedented opportunities in applications to problems of great national importance in the nuclear energy and security sector. Part 1 is available as arXiv:1306.5022 [physics.acc-ph] and Part 2 is available as arXiv:1306.5009 [hep-ex].
Part 2 of Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts. In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physi cs. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, hadron structure, hadron spectroscopy, and lattice-QCD calculations. Part 1 is available as arXiv:1306.5022 [physics.acc-ph] and Part 3 is available as arXiv:1306.5024 [physics.acc-ph].
Comparisons of lattice-QCD calculations of semileptonic form factors with experimental measurements often display two sets of points, one each for lattice QCD and experiment. Here we propose to display the output of a lattice-QCD analysis as a curve and error band. This is justified, because lattice-QCD results rely in part on fitting, both for the chiral extrapolation and to extend lattice-QCD data over the full physically allowed kinematic domain. To display an error band, correlations in the fit parameters must be taken into account. For the statistical error, the correlation comes from the fit. To illustrate how to address correlations in the systematic errors, we use the Becirevic-Kaidalov parametrization of the D -> pi l nu and D -> K l nu form factors, and a analyticity-based fit for the B -> pi l nu form factor f_+.
We present an update of our calculations of the decay constants of the D, D_s, B, and B_s mesons in unquenched 2+1 flavor QCD. We use the MILC library of improved staggered gauge ensembles at lattice spacings 0.09, 0.12, and 0.15 fm, clover heavy qua rks with the Fermilab normalizations, and improved staggered light valence quarks.
The measured rate for D_s -> l nu decays, where l is a muon or tau, is larger than the standard model prediction, which relies on lattice QCD, at the 3.8 sigma level. We discuss how robust the theoretical prediction is, and we show that the discrepan cy with experiment may be explained by a charged Higgs boson or a leptoquark.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا