ترغب بنشر مسار تعليمي؟ اضغط هنا

Using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach, we investigate the effects of a dressed-quark-gluon vertex on pseudoscalar meson masses. In particular, we focus on the unequal-mass case and investigate heavy-light meson masses; in addition, we study the premise of the effective treatment of heavy quarks in our approach.
We investigate the properties of mesons with the exotic J^PC = 1^-+ quantum numbers. Starting out from the light-quark domain, where the pi_1 states are used as references, we predict the masses of analogous quarkonia for cbar{c} and bbar{b} configur ations. We employ a covariant Dyson-Schwinger-Bethe-Salpeter-equation approach with a rainbow-ladder truncated model of quantum chromodynamics.
117 - M. Blank , A. Krassnigg 2011
Using a well-established effective interaction in a rainbow-ladder truncation model of QCD, we fix the remaining model parameter to the bottomonium ground-state spectrum in a covariant Bethe-Salpeter equation approach and find surprisingly good agree ment with the available experimental data including the 2^{--} Upsilon(1D) state. Furthermore, we investigate the consequences of such a fit for charmonium and light-quark ground states.
88 - A. Krassnigg , M. Blank 2010
We investigate tensor mesons as quark-antiquark bound states in a fully covariant Bethe-Salpeter equation. As a first concrete step we report results for masses of J^{PC}=2^{++} mesons from the chiral limit up to bottomonium and sketch a comparison t o experimental data. All covariant structures of the fermion-antifermion system are taken into account and their roles and importance discussed in two different bases. We also present the general construction principle for covariant Bethe-Salpeter amplitudes of mesons with any spin and find eight covariant structures for any J>0.
83 - A. Krassnigg 2009
In theoretical hadron physics mesons are a center of attention. Constructed in a simpler way than baryons in the quark model, they still present a considerable challenge if one aims at an understanding of all their aspects in terms of quarks and gluo ns in the context of Quantum Chromodynamics, the quantum field theory of the strong interaction. Complementary to (constituent-) quark models, reductions of the Bethe-Salpeter equation, lattice QCD, and effective field theories, the Dyson-Schwinger-equation approach has emerged as a well-suited formalism for the covariant study of hadron properties. In particular, radially excited mesons exhibit a sensitivity to long-range strong-interaction physics. This sensitivity has recently been studied with the help of the Bethe-Salpeter equation. Here these studies are reviewed and continued together with an account of possible future developments.
Established results for the quark propagator in Landau gauge QCD, together with a detailed comparison to lattice data, are used to formulate a Poincare covariant Faddeev approach to the nucleon. The resultant three-quark amplitudes describe the quark core of the nucleon. The nucleons mass and its electromagnetic form factors are calculated as functions of the current quark mass. The corresponding results together with charge radii and magnetic moments are discussed in connection with the contributions from various ingredients in a consistent calculation of nucleon properties, as well as the role of the pion cloud in such an approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا