ترغب بنشر مسار تعليمي؟ اضغط هنا

A MHz frame rate X-ray area detector (LPD - Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 mm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASICs preamplifier provides relatively low noise at high speed which results in a high dynamic range of 10^5 photons over an energy range of 5-20 keV. Small scale prototypes of 32x256 pixels (LPD 2-Tile detector) and 256x256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 10^4 at 12 keV with a readout noise equivalent to <1 photon rms in its most sensitive mode.
91 - E. Caffau , A. Koch , L. Sbordone 2012
In preparation for future, large-scale, multi-object, high-resolution spectroscopic surveys of the Galaxy, we present a series of tests of the precision in radial velocity and chemical abundances that any such project can achieve at a 4m class telesc ope. We briefly discuss a number of science cases that aim at studying the chemo-dynamical history of the major Galactic components (bulge, thin and thick disks, and halo) - either as a follow-up to the Gaia mission or on their own merits. Based on a large grid of synthetic spectra that cover the full range in stellar parameters of typical survey targets, we devise an optimal wavelength range and argue for a moderately high-resolution spectrograph. As a result, the kinematic precision is not limited by any of these factors, but will practically only suffer from systematic effects, easily reaching uncertainties <1 km/s. Under realistic survey conditions (namely, considering stars brighter than r=16 mag with reasonable exposure times) we prefer an ideal resolving power of R~20000 on average, for an overall wavelength range (with a common two-arm spectrograph design) of [395;456.5] nm and [587;673] nm. We show for the first time on a general basis that it is possible to measure chemical abundance ratios to better than 0.1 dex for many species (Fe, Mg, Si, Ca, Ti, Na, Al, V, Cr, Mn, Co, Ni, Y, Ba, Nd, Eu) and to an accuracy of about 0.2 dex for other species such as Zr, La, and Sr. While our feasibility study was explicitly carried out for the 4MOST facility, the results can be readily applied to and used for any other conceptual design study for high-resolution spectrographs.
We present a new suite of photometric and spectroscopic data for the faint Bootes II dwarf spheroidal galaxy candidate. Our deep photometry, obtained with the INT/WFC, suggests a distance of 46 kpc and a small half-light radius of 4.0 arcmin (56 pc), consistent with previous estimates. Follow-up spectroscopy obtained with the Gemini/GMOS instrument yielded radial velocities and metallicities. While the majority of our targets covers a broad range in velocities and metallicities, we find five stars which share very similar velocities and metallicities and which are all compatible with the colors and magnitudes of the galaxys likely red giant branch. We interpret these as a spectroscopic detection of the Bootes II system. These stars have a mean velocity of -117 km/s, a velocity dispersion of (10.5+-7.4) km/s and a mean [Fe/H] of -1.79 dex, with a dispersion of 0.14 dex. At this metallicity, Boo II is not consistent with the stellar-mass-metallicity relation for the more luminous dwarf galaxies. Coupled with our distance estimate, its high negative systemic velocity rules out any physical connection with its projected neighbor, the Bootes I dwarf spheroidal, which has a velocity of ~+100 km/s. The velocity and distance of Bootes II coincide with those of the leading arm of Sagittarius, which passes through this region of the sky, so that it is possible that Bootes II may be a stellar system associated with the Sagittarius stream. Finally, we note that the properties of Bootes II are consistent with being the surviving remnant of a previously larger and more luminous dSph galaxy.
We have obtained high-resolution spectroscopy of ten red giants in the Carina dwarf spheroidal (dSph) with UVES at the ESO/VLT. Here we present the abundances of O,Na,Mg,Si,Ca,Ti and Fe. By comparing the iron abundances [Fe/H] with calcium triplet (C aT) metallicities we show that the empirical CaT technique yields good agreement with the high-resolution data for [Fe/H]>-2 dex, but tends to deviate at lower metallicities. We identify two metal poor stars with iron abundances of -2.72 and -2.50 dex. These stars are found to have enhanced [alpha/Fe] ratios similar to those of stars in the Milky Way halo. However, the bulk of the Carina red giants are depleted in the [alpha/Fe] abundance ratios with respect to the Galactic halo at a given metallicity. One of our targets, with a [Fe/H] of -1.5 dex, is considerably depleted in almost all of the alpha-elements by ~0.5 dex compared to the solar values. Such a low [alpha/Fe] can be produced by stochastical fluctuations in terms of an incomplete mixing of single Type Ia and II SNe events into the ISM. Our derived element ratios are consistent with the episodic and extended SF in Carina known from its color-magnitude diagram. We find a considerable star-to-star scatter in the abundance ratios. This suggests that Carinas SF history varies with position within the galaxy, with incomplete mixing. Alternatively, the SF rate is so low that the high-mass stellar IMF is sparsely populated, as statistically expected in low-mass star clusters, leading to real scatter in the resultant mass-integrated yields. Both ideas are consistent with slow stochastic SF in dissolving associations, so that one may not speak of a single SF history at a detailed level (Abridged).
We present the projected velocity dispersion profile for the remote (d=233kpc) Galactic dwarf spheroidal (dSph) galaxy Leo II, based on 171 discrete stellar radial velocities that were obtained from medium-resolution spectroscopy using the FLAMES/GIR AFFE spectrograph at the European Southern Observatory, Chile. The dispersion profile of those stars with good membership probabilities is essentially flat with an amplitude of 6.6+-0.7 km/s over the full radial extent of our data, which probe to the stellar boundary of this galaxy. We find no evidence of any significant apparent rotation or velocity asymmetry which suggests that tidal effects cannot be invoked to explain Leo IIs properties. From basic mass modeling, employing Jeans equation, we derive a mass out to the limiting radius of (2.7+-0.5) 10^7 Msun and a global mass to light ratio of 27-45 in solar units, depending on the adopted total luminosity. A cored halo profile and a mild amount of tangential velocity anisotropy is found to account well for Leo IIs observed kinematics, although we cannot exclude the possibility of a cusped halo with radially varying velocity anisotropy. All in all, this galaxy exhibits dark matter properties which appear to be concordant with the other dSph satellites of the Milky Way, namely a halo mass profile which is consistent with a central core and a total mass which is similar to the common mass scale seen in other dSphs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا