ترغب بنشر مسار تعليمي؟ اضغط هنا

After providing a general formulation of Fermion flows within the context of Hudson-Parthasarathy quantum stochastic calculus, we consider the problem of determining the noise coefficients of the Hamiltonian associated with a Fermion flow so as to mi nimize a naturally associated quadratic performance functional. This extends to Fermion flows results of the authors previously obtained for Boson flows .
Within the framework of the Accardi-Fagnola-Quaegebeur (AFQ) representation free calculus of cite{b}, we consider the problem of controlling the size of a quantum stochastic flow generated by a unitary stochastic evolution affected by quantum noise. In the case when the evolution is driven by first order white noise (which includes quantum Brownian motion) the control is shown to be given in terms of the solution of an algebraic Riccati equation. This is done by first solving the problem of controlling (by minimizing an associated quadratic performance criterion) a stochastic process whose evolution is described by a stochastic differential equation of the type considerd in cite{b}. The solution is given as a feedback control law in terms of the solution of a stochastic Riccati equation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا