ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - Arlette Noels 2015
Stellar conditions leading to a possible semi-convective mixing are discussed in three relevant cases: (1) low mass MS stars in which the CNO cycle takes progressively the lead over the PP chain due to the increase in temperature as core hydrogen bur ning proceeds, (2) massive MS stars which experience a large contri- bution of the radiation pressure to the total pressure and (3) core helium burning stars for which the production of carbon in the core increases the opacity. A short discussion of semi-convection in terms of instability of non radial modes follows.
I report on the APOKASC catalog, a joint effort between the Kepler Asteroseismic Science Consortium and the SDSS-III APOGEE spectroscopic survey. It will contain both seismic and spectroscopic values for stars observed by both surveys. I discuss the derivation of spectroscopic parameters and their uncertainties from the H-band spectra delivered by the APOGEE spectrograph, illustrating the sensitivity of stellar spectra to some parameters, such as Teff, and lack of sensitivity to others, such as logg.
We summarize here the discussions around photospheric constraints, current uncertainties in models of stellar atmospheres, and reports on ongoing spectroscopic surveys. Rather than a panorama of the state of the art, we chose to present a list of ope n questions that should be investigated in order to improve future analyses.
Numerous physical aspects of stellar physics have been presented in Ses- sion 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discus- sion at the end of the session and eventually at the end of the workshop. A table of model uncertainties is then drawn with the help of the participants in order to give the state of the art in stellar modeling uncertainties as of July 2013.
The open cluster NGC 6633 was observed with CoRoT in 2011 and simultaneous high-resolution spectroscopy was obtained with the SOPHIE and HARPS spectrographs. One of the four targets was not found to be a cluster member. For all stars we provide estimates of the seismic and spectroscopic parameters.
The open clusters in the Kepler and CoRoT fields potentially provide tight constraints for tests of stellar models and observational methods because they allow a combination of complementary methods. We are in the process of identi- fying and measuri ng parameters for detached eclipsing binaries (dEBs) in the open clusters in the Kepler and CoRoT fields. We make use of measurements of dEBs in the clusters to test the accuracy of asteroseismic scaling relations for mass. We are able to provide strong indications that the asteroseismic scaling relations over- estimate the stellar mass, but we are not yet able to distinguish between different proposed corrections from the literature. We argue how our ongoing measurements of more dEBs in more clusters, complemented by dEBs in the field, should be able to break the degeneracy. We also briefly describe how we can identify cluster stars that have evolved through non-standard evolution by making use of ensemble asteroseismology.
The CoRoT and Kepler space missions have detected oscillations in hundreds of Sun-like stars and thousands of field red-giant stars. This has opened the door to a new era of stellar population studies in the Milky Way. We report on the current status and future prospects of harvesting space-based photometric data for ensemble asteroseismology, and highlight some of the challenges that need to be faced to use these stars as accurate clocks and rulers for Galactic studies.
We give here the Table of Contents and clickable links to papers of the proceedings from the workshop Asteroseismology of Stellar Populations in the Milky Way, held in Sesto, 22-26 July 2013. The aim of this workshop was to foster collaborations an d discussions between expert researchers in Galactic evolution, specialists in stellar structure and asteroseismology, and key representatives of extensive ground-based spectroscopic surveys such as APOGEE and the ESO-Gaia Spectroscopic Survey. The workshop was devoted to discussing first results achieved by combining spectroscopic and seismic constraints on populations of stars observed by CoRoT and Kepler, and the relevance of CoRoT and Kepler surveys in the context of future Gaia observations.
53 - A. Noels , M. Godart , S. Salmon 2014
Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their quiet main sequence phase and later on during their subgiant and heliu m burning phases. What is the extent of the mixed central region? In the local mixing length theory (LMLT) frame, are there structural differences using Schwarzschild or Ledoux convection criterion? Where are located the convective zone boundaries? Are there intermediate convection zones during MS and post-MS phase, and what is their extent and location? We discuss these points and show how asteroseismology could bring some light on these questions.
The detection of radial and non-radial solar-like oscillations in thousands of G-K giants with CoRoT and Kepler is paving the road for detailed studies of stellar populations in the Galaxy. The available average seismic constraints allow a precise an d largely model-independent determination of stellar radii (hence distances) and masses. We here briefly report on the distance determination of thousands of giants in the CoRoT and Kepler fields of view.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا